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chapter 1
Introduction

The internet has given us an avalanche of options for what 
to read, watch and buy. Because of this, recommendation al-
gorithms, which find items that will interest a particular per-
son, are more important than ever.

But until recently, recommendation algorithms suffered 
from a critical shortcoming: they didn’t understand the con-
tent of the items they are recommending or the underlying 
preferences of their users. Using them was like getting a book 
recommendation from someone who hadn’t read the book 
and didn’t know you well. This limitation was down to naive 
algorithms that made unsubstantiated assumptions with in-
sufficient datasets, and a general lack of tools and hardware to 
unlock meaning within raw content. However, thanks to re-
cent algorithmic advances in the field of embeddings, namely 
multi-modal models, we have begun to uncover how the se-
mantic content of items relates to a user’s preference.

This new capability will allow us to do several things. First, 
it will improve current recommendation systems by solving 
the cold start problem — where existing algorithms simply 
cannot create recommendations for items or users they hav-
en’t seen before. It will also improve recommendations by al-
lowing the algorithms to use the most important information 
about each item: the item itself. Algorithms that understand 



Introduction  7

 
 
 
chapter 1
Introduction

The internet has given us an avalanche of options for what 
to read, watch and buy. Because of this, recommendation al-
gorithms, which find items that will interest a particular per-
son, are more important than ever.

But until recently, recommendation algorithms suffered 
from a critical shortcoming: they didn’t understand the con-
tent of the items they are recommending or the underlying 
preferences of their users. Using them was like getting a book 
recommendation from someone who hadn’t read the book 
and didn’t know you well. This limitation was down to naive 
algorithms that made unsubstantiated assumptions with in-
sufficient datasets, and a general lack of tools and hardware to 
unlock meaning within raw content. However, thanks to re-
cent algorithmic advances in the field of embeddings, namely 
multi-modal models, we have begun to uncover how the se-
mantic content of items relates to a user’s preference.

This new capability will allow us to do several things. First, 
it will improve current recommendation systems by solving 
the cold start problem — where existing algorithms simply 
cannot create recommendations for items or users they hav-
en’t seen before. It will also improve recommendations by al-
lowing the algorithms to use the most important information 
about each item: the item itself. Algorithms that understand 



8  Introduction

content — and the preferences of a user in relation to that 
content — can make better recommendations. Using these 
recommendation algorithms is like getting a book recom-
mendation from friend who knows you well and has actually 
read the book!

Another exciting aspect of these new algorithms is the 
ability to apply recommendation algorithms in contexts oth-
er than e-commerce. Better recommendations predict the 

Model

Recommendations

The model is a

traditional approach

I’m not really a big reader
myself. I just look at what
everybody else is reading.

Model

The model is a

content-aware approach

Recommendations 

Yes, I’ve read those books.
I think you will enjoy these
selections that I read and
found similar.

figure 1.1 We can now build recommendation systems that are 

content-aware, addressing a weakness of traditional approaches.

Introduction  9

outcome of an interaction, so why restrict their use to e-com-
merce? Multi-modal models could become important in many 
situations: pairing users to customer service representatives, 
recommending which emails you should respond to first (and 
why), or even recommending travel routes that are not simply 
the most efficient, but rather the route you would most prefer.

In this report we discuss this new field, from the history 
of how it has evolved to where it currently is and what work 
is being done to make the algorithms more widely applicable. 
While these methods are still in their infancy, they show in-
credible promise.
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chapter 2
What Are Recommendations?

Recommendation algorithms may seem to inhabit only 
content platforms and e-commerce websites, but their appli-
cation is actually quite broad. Whenever we have two types of 
things that need to be paired together — moviegoers and mov-
ies, customers and customer support representatives — we 
have a recommendation problem. The task is, given historical 
information about how these pairings have gone in the past, 
to predict new pairings for the future.

1. Harry Potter and the 
Chamber of Secrets
- because you liked 
Sorcerer’s Stone

2. Lord of the Rings: 
Return of the King
- because you liked 
Fellowship of the Ring

3. Game of Thrones
- because you liked 
Fellowship of the Ring

Movie and TV
Recommendations

Sales Representative
Recommendations

1. Arlene Lamb
- because they have 
expertise in your 
question area

2. Ethel Clarke
- because they respond 
quickly

3. Hector Maldonado
- because they respond 
relatively quickly

figure 2.1 Recommendation systems have many uses beyond 

recommending products.
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For example, we can easily imagine a system that predicts 
the best customer sales representative to help a person based 
on the current question as well as past interactions. Or we 
could choose to make a system that predicts the outcome of 
the interaction between X and Y. Because of the symmetry of 
the system, it could also be used to recommend X given Y or 
Y given X.

The massive scope of applicability is why recommenda-
tion problems constantly show up in different fields, and also 
why they are so hard to solve (as we’ll discuss in 2.2.1 Complex-
ity of the Problem). It is because of their complexity that in 
most places where recommendation algorithms would make 
sense, heuristics are used instead. For example, an online 
video game will usually group users together based on expe-
rience. What if instead the grouping also took into consider-
ation play style and social dynamics? Both systems would be  
recommending users to users for matching in a game;  

User

Item Item

User Item

Item

User

User

User

User

Item

Factor

Factor

Item

Item

Item

Collaborative filtering Matrix factorization

figure 2.2 Collaborative filtering and matrix factorization make 

use of past interactions to make recommendations.

What Are Recommendations?  13

however, the former ignores all but the simplest information. 
On the other hand, extracting the relevant information to 
make the more informed decision is incredibly difficult; we 
don’t have information regarding most of the possible pair-
ings, and we can’t know while building the system whether 
user A and B will actually play well together.

There have been many attempts to try to uncover some of 
this underlying information in the data. Collaborative filter-
ing and matrix factorization are two methods that have gen-
erally been the frontrunners for solving these problems by us-
ing previous interactions to try and understand how objects 
interact.

Deep learning has also recently come into the recommen-
dations game and shifted things quite a lot. The main benefit 
from deep learning (as we’ll see in 3.1.4 Neural Network Ap-
proaches) is that we can use more than just interaction data, 
and start learning from the actual raw data describing the 

Embedding

Item

Item

Item

User

figure 2.3 Embeddings can use text or image data from an item 

to group them for recommendations.
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objects we are recommending. Because of this, the models 
can more easily uncover the semantic information that con-
tributes to why the interactions go well or poorly. This is done 
using a new and promising method called multimodal em-
bedding (MME).

We discussed embeddings in "Summarization" (FF04),1 
where we examined using models such as word2vec2 and 
skip-thoughts as a way to turn language into a numeri-
cal representation that a computer can understand. Unlike 
classic representations (for example, bag of words), this rep-
resentation distills an understanding of the text that can be 
used to do complex and insightful calculations — these mod-
els are powerful enough to solve analogies and summarize 
documents!

More importantly, multi-modal systems learn funda-
mental characteristics about the items or users and create a 
model that understands how these characteristics (which can 
come from intrinsic data, such as an image or description of 
an item) relate to each other. By having our recommenda-
tion system extract semantic meaning from that raw data we 
can form recommendations for items and users we’ve never 
seen before, avoiding the so-called "cold start problem" that 
plagues other methods.

While this extension to the field is still in its infancy, more 
work is being done constantly to expand the utility of deep 
learning in recommendations. We’ll explore some of the 
shortcomings of the current approaches in 4.2.3 Failures, but 

1 Available at http://fastforwardlabs.com/research/FF04.

2 See http://mubaris.com/2017/12/14/word2vec/.
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this field is ramping up and soon will open up the possibility 
to solve most of the problems that are recommendation prob-
lems as recommendation problems.

2.1 The Role of Representation
The term "representation" will come up a lot in this report, 

and it is important enough that we should spend some time 
discussing what it means. All algorithms operating on re-
al-world objects need to come up with some way of represent-
ing those objects in a quantitative way. One way of represent-
ing categorical data, or data that can be divided into groups, 
is with a one-hot vector. That is to say, you have a long list of 
all the possible values a sample can be represented by, and for 
each individual sample, you put a 1 for each value that’s pres-
ent and a 0 for all the others. For example, a bookseller who 
wanted to encode the topics of the books in their inventory 
could use a one-hot vector for the topics in Harry Potter and 
the Sorcerer’s Stone that looked like figure 2.4.

This can be done for all sorts of fields that may be pres-
ent. So, we could encode a book title by having a list of all the 
possible words that could be in the title, and putting a 1 next 
to the words that exist in the title of the book we’re encoding 

Sci-fiDrama Fantasy RomanceMysteryComedy

0 0 1 0 0 0

figure 2.4 An example one-hot vector for Harry Potter and the  

Sorcerer’s Stone.
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(this is the aforementioned "bag of words" approach). Similar-
ly, for interactions, we could have a list of all our users, and for 
a given book we could put a 1 next to the users who have inter-
acted with that book and a 0 next to the users who have not.3

The major problem with these methods, however, is that 
they don’t represent any meaningful semantic information 
about the content that we can use for comparison. For exam-
ple, consider the bag of words representations for The Buffalo 
Book: The Full Saga of the American Animal and High Hopes: The 
Rise and Decline of Buffalo, New York. Ignoring stopwords like 

"of" and "the," they are linked by the word "Buffalo." On the 
other hand, those titles share no words in common with that 

3 If we accumulate this vector for all books we create an adjacency 

matrix, which will be discussed in 3.1.1 Collaborative Filtering.

figure 2.5 Simply checking for the presence of common words 

ignores the context those words are used in.

High Hopes:
The Rise and 
Decline of 
Buffalo,
New York

Represented as similar 
because they share

the keyword Buffalo

Not represented as
similar because they
don’t share keywords

The Buffalo
Book: The Full
Saga of the 
American 
Animal

Of Bison
and
Man

What Are Recommendations?  17

of a third book, Of Bison and Man. As humans, we can see the 
relationships between the books and understand that The Buf-
falo Book and Of Bison and Man are related, while High Hopes is 
about a completely different topic — but using this represen-
tation, a computer cannot.

Throughout this report, we’ll talk about three main ways 
of picking representations for recommendations that address 
this issue: collaborative filtering, matrix factorization, and 
multimodal embeddings. We will dive into the full technical 
details in 3.1 History of Recommendation Systems, but think-
ing about the various types of representations used in the al-
gorithms is a good way to distinguish and understand them.

In collaborative filtering (see figure 2.6), we ignore all the 
problems with having rich representations of objects in our 
recommendation system and simply focus on the user-item 
interactions, hoping that the interactions themselves contain 

User Items liked
by user

Other users
who liked items

Recommended
items

Step 1 Step 2 Step 3 Step 4

figure 2.6 Collaborative filtering finds recommendations using 

common likes between users.
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meaningful information. That is to say, some people are just 
very into buffalo, and thus their interactions will mainly be 
with books on that topic… a feature that will propagate into 
our recommendation system (even if we don’t know what a 
buffalo is!).

In matrix factorization, described in 3.1.2 Matrix Factor-
ization, we take the interaction data or the metadata and try 
to distill it into a smaller, more compact form (see figure 2.7). 
So, the bag-of-words representation for a book title, which 
could consider tens of thousands of words, would be distilled 
down to 10 or so values (called factors), which would encode 
higher-level features. This can be thought of as a type of top-
ic extraction, in the sense that sets of features (like the pres-
ence of the word "buffalo" or "bison") contribute to one factor, 
while the presence of other sets of features (like the words 

"New York") will contribute to another factor. However, matrix 

Recommended
items

FactorsUser
Step 1 Step 2 Step 3

figure 2.7 Matrix factorization abstracts factors out of the items 

and uses those factors to make recommendations.

What Are Recommendations?  19

factorization still starts with one-hot representations before 
creating a new one, and thus carries with it many of the asso-
ciated problems.

Embeddings, on the other hand, never attempt to look at 
the bag-of-words representation and instead look at the raw 
text (figure 2.8). In doing so, they are able to learn from word 
order and from word context. In the end, this gives us a rep-
resentation where titles about buffalo, regardless of the exact 
terminology being used, will be deemed similar to each other. 
Moreover, the structure that the embedding learns contains 
within it a general understanding of how all the words relate 
to each other. For example, with word2vec it is possible to 
add and subtract words such that, for example, vec("USA") - 
vec("Washington DC") + vec("France") is close to vec("Paris"). 
This sort of deep understanding about the content of the data 

User

For each item:

Item Item text

Items
liked

Text of
items liked

Embedding space

Nearest items are
recommended items

figure 2.8 Embeddings use raw text to place items and users in 

an embedding space.
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being fed into the system is unparalleled, and lets us use in-
formation that is hidden in text — such as topic, tone, style, 
and content — in our algorithms.

For more information about the importance of represen-
tation and how they are created in the context of language 
models, please read section 4.2, "Language Models with RNNs" 
from FF04: Summarization.

2.2 Why Recommendations Are Hard

2.2.1 Complexity of the Problem
Like A/B testing and reinforcement learning, recommen-

dations are part of a class of problems called Markov decision 
processes (MDPs). MDPs are problems where there is a finite 
state describing the world and a finite number of actions that 
can be taken, and each action has an unknown reward asso-
ciated with it. Returning to the initial e-commerce example, 
the state would be a user’s history on the site and the inter-
action history for all the items in the online catalogue. The 
action would be a choice of which item to show to the user, 
and the reward would be whether the user purchases the 
item. Importantly, the effects of the action and the final user 
interaction go on to affect the state of the system and change 
future actions. This way of thinking about recommendations 
is a useful way to account for both the generality of these sys-
tems (beyond just e-commerce) and complications in building 
a robust system.

As a point of comparison, let’s look at a solution to an 
MDP that has gained popularity — playing Atari with rein-
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forcement learning.4 A good way to do this is by looking at 
the number of parameters involved in defining the problem; 
it can serve as a proxy for how complex our solution must be. 
An Atari screen has a resolution of 160x192 pixels and a max-
imum of 128 colors. This corresponds to a state that can be 
represented by 3,932,160 numbers. The action state can be en-
coded by three numbers, two for the left/right and up/down 
position of the joystick and one for the button. Finally, the re-
ward is simply how much a user’s score has gone up.

In contrast, the Netflix recommendations dataset5 con-
tains 17,770 movies, rated from 1 to 5 by 480,189 users. This 
creates a state representable by 42,664,792,650 numbers (and 
this is if we ignore the order in which a user watches movies!). 
The number of actions we can take is equal to the number of 
items we have multiplied by the number of recommendations 

4 See https://arxiv.org/abs/1312.5602.

5 See https://www.kaggle.com/netflix-inc/netflix-prize-data.
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we want to show the user. Even if we only recommend one 
movie, that’s an action state representable by 17,770 numbers! 
Furthermore, the reward can become quite tricky to calcu-
late. We can look at whether a user watches the movie, but 
we might also consider what rating that user gives it, whether 
they watch the whole thing, or whether that movie recom-
mendation influences their decision to watch another movie 
(for example, if we recommended 2 Fast 2 Furious but the user 
decides to watch the original Fast and Furious first).

In order to deal with this complexity, various algorithms 
have been created that take advantage of some structure we 
can find in the data. This structure can be used to reduce the 
number of parameters needed to model the problem and 
make a model tractable. As an example, classical collabora-
tive filtering algorithms (described in detail in 3.1.1 Collab-
orative Filtering) rely on the assumption that people can be 
considered similar if they interact with similar items, and that 
people want to see items that similar people like. What this 
does is reduce the number of possible recommended items to 
those our friends have interacted with, or those that people 
who’ve bought similar things to items we’ve purchased have 
interacted with. This may seem like a fairly benign assump-
tion to make, but what happens, for example, with the news 
media if most people see the same 90% of articles from the 
major headlines, and a user’s personal taste is only evident 
from the last 10% of articles they look at? We discuss some of 
the possible social effects of this in 7.1 Filter Bubbles & Echo 
Chambers.

Multimodal embeddings try to approach this problem by 
avoiding it entirely. Instead of operating on every item and  
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every user separately, we only consider the properties that 
make up the objects. With books, for example, this means 
that we only need to consider the words that make up a book’s 
summary. This may seem like making the problem much 
harder, but it’s a method that also comes with a lot more 
data, since each item has a wealth of data associated with 
it. Furthermore, since we are training our system simply to 
find good representations of the books, as opposed to directly 
creating recommendations, we simplify the action phase of 
the algorithm as well. We now only have to put books in the 
neighborhood of books other people have liked, and far away 
from books other people haven’t liked.

2.2.2 New Data
Another difficulty is how to deal with new items. For ex-

ample, if we have a new article that no one has interacted with, 
how do we know what types of users might enjoy it if we are 
relying on the interactions of "similar users" for our recom-
mendations? Recommendation systems such as these on the 
internet generally also come with explanations in the form of: 

"You read article A, and so did Alice. Alice also read article B, 
so you should read it, too." In the absence of a user interacting 
with the article, however, we don’t know how it fits in with user 
preferences. This is the cold start problem mentioned earlier.

Many methods attempt to solve it by using metadata about 
the objects. So, if you generally read political articles, we will 
recommend to you our new political article, regardless of who 
has interacted with it. This, however, can lead to very bad rec-
ommendations, because we have to make strong assumptions 
about what properties to extract out of an article so that our 
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system will have a general understanding of it. What if you 
don’t actually care about politics in general, and just want to 
read about a certain event or figure? In that case, our system 
would have to have a special tag that takes that into account. 
Alternatively, you may simply like long-form political edito-
rials and nothing else; how can a metadata algorithm know 
this, unless we have already introduced "long-form politics" 
as a tag in our system?

Multimodal embeddings are able to deal with this by look-
ing directly at the content that is being recommended and 
learning their own way of understanding the relevant fea-
tures. This stems from the trend in machine learning of using 
deep learning to automatically find what aspects of the data 
are interesting.6 The thought is: why should I tell the system 

6 This is called feature engineering, and it is generally something 

that must be done with some domain expertise. Deep learning, how-

ever, has shown that it is able to do automatic feature engineering, 

often finding better features than experts would!
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figure 2.10 Collaborative filtering is unable to make recommen-
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that I think "long-form politics" will be important, when it can 
learn that by itself? In fact, this is a much more robust way of 
doing things, since the machine is able to find a much wider 
variety of ways of representing the items than a human could.

MMEs rely only on the content of the items being recom-
mended and the items that users have interacted with in the 
past. This helps us completely avoid the cold start problem, 
because we don’t need to know who is interacting with a new 
piece of media or what tags are associated with it; we simply 
need to know its content. The algorithm is able to use that 
information to infer how the content aligns with a person’s 
interests. We can recommend a new article to you because the 
topic/tone/style aligns with your preferences, not because of 
other users' interactions.

2.2.3 Missing Data and Evaluation
Finally, we come to the biggest difficulty with recommen-

dations: evaluation. When first creating a recommendation 
system, you have to decide what you are actually trying to do. 
Are you trying to predict whether a user will interact with a 
new item, or predict the user’s preference order for various 
items? How do you know when you’ve failed? How do you 
know when you’ve succeeded? How do you deal with the fact 
that your model is fundamentally altering the state of the 
world it is trying to model?

Generally, when a recommendation system is being creat-
ed, data is truncated in time, and we try to predict the new-
est data using the oldest data. This is to simulate the fact that 
when training a model, we cannot ask the user whether they 
would like a recommendation or not. This changes the prob-
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lem into one of predicting whether a user did, in the newest 
data, interact with a recommended item (essentially remov-
ing any notion of feedback). It is important to realize, though, 
that this is fundamentally a different problem, and comes 
with its own additional problems.

For example, if I predicted that you would like Introduction 
to Algorithms but you didn’t interact with it in the latest data, 
then was I wrong? Should I penalize my algorithm in favor 
of it predicting that you wouldn’t like the book? If you as a 
user have only given me a very small sample of data regarding 
your preferences, it is impossible to tell. This is why current 
recommendation methods are very quick to put users into 
very small groups of recommendations; they assume that 
anything you haven’t interacted with is something you don’t 
like, instead of simply being something you haven’t had the 
chance to interact with yet. This is particularly problematic 
because most users only interact with a small percentage of 
a vast number of possible items. (How many movies from the 
Netflix catalogue have you looked at? How many items from 
Amazon’s full listing have you bought?)

As a result, the only motivated way to train a recommen-
dation system is online, using A/B testing, multi-armed ban-
dits,7 or similar algorithms from the reinforcement learning 
community. These algorithms explore how you may react 
to different items, and they operate on user feedback, as op-

7 Multi-armed bandits is a generalization of A/B testing where multi-

ple different results are possible. It uses a much more statistically mo-

tivated way of deciding when to pick one result over another when 

compared to classic A/B testing.
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posed to historical data. This removes the assumption that 
not interacting is the same as not liking, as well as intrinsical-
ly incorporating that feedback.

However, doing this is hard — and it is hard for reasons 
that no algorithm can fix. We must show results to users and 
get their feedback. This requires having a large enough and 
active enough user base to be able to test and refine the sys-
tem. Furthermore, it requires a good enough data pipeline to 
take this interaction data in and refine the model on the fly, 
as more interactions occur. Consequently, it generally takes 
much longer to train a model that has satisfactory results.

2.3 What Are the Solutions?
We can see that recommendations is a very complex prob-

lem. There are many decisions to be made about algorithm, 
representation and data quality. In addition, it may not always 
be obvious what is being optimized for or how to best capture 
this as a machine learning task. Because of these subtleties, 
it is important to have a good understanding of the variety of 
algorithms that support these recommendation systems. By 
understanding the algorithms, choices can be made to miti-
gate many of the complications introduced here.
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How Do Recommendations Work?

In order to fully understand the current landscape of rec-
ommendation systems, it’s important to go through the histo-
ry of the algorithmic advancements. No method created yet is 
a one-size-fits-all solution, so it’s essential to understand the 
benefits of all possible methods in order to create the best sys-
tem for your problem.

Furthermore, this is an active field of research, and new 
algorithms and methods are constantly being published. One 
result of this volatility in the field is that an understanding 
of the nuances of your data is necessary in making proper al-
gorithmic choices; no current algorithm is robust enough to 
take in arbitrary data and output high-quality results. Even 
the multimodal approaches we present in this report are 
still fragile and require care when being used (as we discuss 
in 4.2.3 Failures). As a result, knowing the variety of recom-
mendation algorithms that are available and iterating in com-
plexity is crucial for building a high-quality recommendation 
system.
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3.1 History of Recommendation Systems

3.1.1 Collaborative Filtering
The term collaborative filtering first appeared in a 1992 pa-

per describing Tapestry,1 an experimental mail system devel-
oped to help users filter for interesting emails. Collaborative 
filtering was novel because it introduced a new dimension to 
the recommendation problem: user feedback. In addition to 
filtering documents by content keywords, this made it possi-
ble to narrow down the results to documents that others have 
found interesting. User feedback data can be explicit or im-
plicit. When a user provides explicit preference information 
(such as liking or disliking an email), the data is considered 
explicit. Implicit data, on the other hand, is generated by user 
actions from which email preferences are inferred. One ex-
ample of implicit data is the number of times a user forwards 
an email.

Recommendation systems today continue to use collab-
orative filtering, but the collaborative data used is more ex-
tensive, the filtering methods more sophisticated. Given a set 
of rich historical interaction data, a recommendation system 
attempts to tease out some information that allows it to pre-
dict user preferences. One approach is to identify a group of 
similar users from the data and assume they share the same 
preferences. If Alice liked two out of the three books that Bob 
liked, perhaps Alice is similar to Bob and the system can rec-
ommend the third book Bob liked to Alice? This neighborhood 

1 See https://www.ischool.utexas.edu/\~i385d/readings/Goldberg_

UsingCollaborative_92.pdf.
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strategy disregards the underlying content — it does not need 
to know that the books Bob and Alice both liked were from 
the Harry Potter series. On the other hand, the lack of domain 
knowledge means that neighborhood methods can only pre-
dict preferences for items they have seen before (the cold start 
problem). In the example of Alice and Bob, if there is a new 
Harry Potter book and no one has read it before, the system 
will not know what to do with it.

What sort of representation for users should we use such 
that recommendation systems can digest it? Users and their 
interactions with various items can first be visualized using 
a graph. In figure 3.1, we see that there are three users (Al-
ice, Bob, Charlie) and four items (Sorcerer’s Stone, Chamber of 
Secrets, Python 101, JavaScript 101). A line between a user and 
an item means that an interaction occurred. This interac-
tion can be an explicit "like" or an implicit "read." If we have 
more information about the interaction, that can be added 
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figure 3.1 Graph of user and item interactions.
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as a weighting factor to the line. For example, if a user rated 
an interaction on a scale of 1 to 5, the line can be weighted 
accordingly.

In figure 3.1 we see, for example, that Alice likes Cham-
ber of Secrets, Javascript 101, and Python 101 while Charlie likes 
Chamber of Secrets and Python 101. This graphical represen-
tation needs to be transformed into a matrix before recom-
mendation algorithms can process it (a matrix formed like 
this to show interactions is called an adjacency matrix). By 
convention, each row of the matrix represents a user and each 
column of the matrix represents an item. figure 3.2 shows 
the matrix derived from our corresponding graph. Each value 
of a line in the graph is entered into the corresponding (User, 
Item) cell in the matrix. In our example, the line between Al-
ice and Chamber of Secrets is entered as a 1 in cell (2,1) of the 
matrix, since we assign Alice to row one and Chamber of Se-
crets to column two. Our example with three users and four 
items translates into a matrix of size 3x4.

In real-life applications, these interaction matrices are 
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large and sparse. The MovieLens 100K dataset, 2 often used 
for benchmarking purposes, has 100,000 ratings from 943 
users on 1,682 movies. The corresponding matrix has a di-
mension of 943x1682 and is sparse; only 6.3% of the matrix 
has data. This sparsity makes it incredibly hard to extract any 
meaningful information from the graph structure, since we 
simply have no clue whether the other 93.7% of interactions 
would go well or poorly.

Furthermore, these matrices usually contain weak prefer-
ence signals. Imagine a user who rates many movies highly 
and indiscriminately. This user would be connected to almost 
every movie in the catalogue and thus would be connected to 
a large number of movies in the catalogue and would have 
a disproportionate effect on the evaluation of recommenda-
tions. In general, it is said that collaborative filtering is not 
very "spam-resistant" for this reason; popular items or users 
will unduly influence any future recommendations. At the 
other extreme, a user who rates very sparingly does not give 
our system very much information about their preferences. 
As a result, their recommendations will be more susceptible 
to the spammy data.

3.1.1.1 k-Nearest Neighbor (k-NN)
Now suppose we would like to make a recommendation for 

Bob. We could start by determining who is similar to Bob. One 
reasonable metric to use is "the number of items that both us-
ers interacted with." Would this work? Imagine two cases: in 
the first case, Frank and Grace rated a total of 100 items, and 

2 See https://www.kaggle.com/prajitdatta/movielens-100k-dataset.
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2 of the items are the same; in the second case, Frank and Dan 
rated a total of 5 items and 2 of the items are the same. Our 
original metric would suggest that Frank is equally similar to 
Grace and Dan. Clearly this is not true. For our original metric 
to be useful, it needs to be normalized. We divide by the total 
number of items interacted with by both users to obtain a new 
metric.

Using this new metric to measure similarity (or distance), 
we compute the distance between (Alice, Charlie) to be 2/3 
and between (Bob, Charlie) to be 1/3. Since Charlie is more 
similar to Alice, we assume that Charlie will also be interested 
in what Alice has liked. Looking back to the matrix represen-
tation, we recommend JavaScript 101 to Charlie.

figure 3.3 Which similarity score is chosen for collaborative 

filtering can substantially change the outcomes.
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The k-NN algorithm is based on this idea. Instead of 
finding the most similar user (or "neighbor"), it looks for k 
of them. In addition, the algorithm uses various distance 
measures.3 In the context of recommenders, one can think 
of k as a trade-off between precision and generality. A large 
k implies that the recommendation result is obtained by ag-
gregating preference information for many similar users.4 

3 Euclidean distance (straight-line distance between two points) 

is commonly used for continuous variables and Hamming distance 

(number of positions at which the strings are different) for discrete 

variables.

4 Examples of ways to aggregate information across users are mean 

and median.
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As a result, it is less targeted and more general. In the extreme 
case where k=1, the system relies on the preference of a single 
user.

The algorithm, while simple to implement, is computa-
tionally expensive because it calculates a distance measure 
for all users in the training set.5 For large datasets, it is often 
intractable. On the other hand, if the dataset is very small, 
simple methods like k-dimensional (k-d) trees would suffice. 
Here, as the name implies, data is split (approximately) in 
half along each dimension. To find the nearest neighbor of a 
data point, one just needs to walk down the tree. Unfortunate-
ly, like k-NN, the k-d tree algorithm suffers from the curse of 
dimensionality; the large number of subbranches in the tree 
makes finding the nearest neighbor prohibitive.

3.1.1.2 Locality-Sensitive Hashing (LSH) Forest
Instead of finding the nearest neighbor, getting an ap-

proximate nearest neighbor often suffices in real-life applica-
tions. Approximate algorithms are stochastic. As mentioned 
in our report "Probabilistic Methods for Realtime Streams" 
(FF02),6 even though the solutions are not exact and are cor-
rect only to a certain probability, these algorithms allow us 
to trade off accuracy with speed. LSH Forest is an example of 
such an algorithm.7

5 This makes the algorithm O(N^2).

6 See http://fastforwardlabs.com/research/FF02.

7 See http://ilpubs.stanford.edu:8090/678/1/2005-14.pdf and 

https://www.youtube.com/watch?v=kKRvEJrvvso.
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Given a set of data points, LSH attempts to group (through 
a hash function) points that are close together into one buck-
et, as illustrated in figure 3.5. Points that end up in the same 
bucket as the target point are considered similar; their actual 
distance measures to the target are computed. The top k (as 
in k-NN) points are returned. The probabilistic nature of LSH 
implies that each run of the algorithm can produce different 
outcomes — that is, each time the algorithm is run, it can find 
different sets of points that belong in the same bucket as the 
target. To increase the chances of finding more similar points, 
the algorithm is run multiple times, with each run yielding a 
set of points that are close to the target (hence the name "For-
est"). The top k points are selected from the union of these sets.

3.1.2 Matrix Factorization
Up until now we have been discussing recommendation 

methods based on user similarities. These neighborhood  
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approaches do not scale well to larger datasets and lack un-
derstanding of the underlying data. Given a user-book inter-
action matrix, neighborhood approaches can tell you that 
Bob and Alice have similar interests, but are unable to explain 
that Bob and Alice are similar because they both like young 
adult fantasy books.

This lack of understanding about the underlying reasons 
for an interaction contributes to collaborative filtering’s in-
ability to deal with spammy data. It also ruins any potential to 
deal with the cold start problem, since without interactions 
with an item or user, we have no information about it. On the 
other hand, matrix factorization, which belongs to a class of 
latent factor models, is a different approach that tries to make 
sense of the interaction matrix. It does so by finding factors 
that explain most or all of the information in the matrix.  
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These factors are extracted from the data mathematically and 
do not easily map to humanly noticeable ones.8

Recall that in collaborative filtering, the representation is 
the interaction matrix where each row represents a user and 
each column represents an item. In matrix factorization we 
instead use two smaller matrices to represent this data. The 
first matrix contains user preferences for factors (rather than 
items), and the second matrix associates items with their fac-
tor representations. As a hypothetical example, instead of 
liking all 14 Harry Potter and Twilight books, a user now likes 
the "Fantasy" and "Young Adult" factors. Chamber of Secrets is 
now represented by the factors "Fantasy" and "Young Adult." 
The hope is that this new representation can model underly-
ing features in the data and start approaching the question of 
why a user liked a particular item. If our representation can 
somehow encode this, then our recommendation algorithm 
can use this information in its predictions.

Once a factorized version of the interaction matrix is cre-
ated, there are two ways to use it for recommendations. In the 
first approach, we multiply these two matrices to give us an 
approximation of the original; issuing a recommendation for 
a particular use-item pair just means reading off the corre-
sponding row and column from the new matrix.9 In the sec-
ond (more common) approach, the problem reverts back to 

8 In examples throughout this report we use the genre of a book as 

an example of these factors for illustrative reasons. Actual factors 

will not be as human-interpretable.

9 Again, each user corresponds to a particular row and each item to 

a particular column in the matrix.
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a k-nearest neighbors problem of finding items with similar 
representations (or in this case, factor values) to users. How-
ever, the output of the recommendation system is now a set 
of factors relating to preference, which needs to be mapped 
to items. Just like in collaborative filtering, where we need a 
method to map similar users to ranked items, we now need a 
way to map user preferences to items.

To use matrix factorization, the number of factors needs 
to be specified. A smaller number is preferred because the 
resulting user-factor and item-factor matrices will be small. 
This leads to a considerable speedup for both training the 

figure 3.7 We can recommend books to Bob based on his factor 

preferences. Note that he has already read Sorcerer’s Stone and 

Chamber of Secrets so we filter those from the final  
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model and offering recommendations. Because matrix fac-
torization enables one to model the interaction matrix, it is 
sometimes referred to as model-based collaborative filtering.

3.1.2.1 Nonnegative Matrix Factorization (NMF)
NMF10 is a special kind of matrix factorization used when 

the original interaction matrix does not have negative ele-
ments and both smaller decomposed matrices are required 
to be nonnegative. In certain applications, the nonnegativity 
constraint is preferred because it provides physically mean-
ingful features. An example is an interaction matrix that cap-
tures the number of times a user clicked on an item. The orig-
inal matrix has physical meaning associated with it, and NMF 
preserves the nonnegativity of the resulting factor matrices.

In NMF, the decomposition of the original matrix into two 
smaller ones is obtained by first defining a cost function11 
and subsequently minimizing it, often using stochastic gra-
dient descent (SGD). This algorithm is an example of why 
understanding the data we are basing our algorithms on is 
so important. Matrix factorization algorithms, like many al-
gorithms based solely on interaction data, can have trouble 
converging. Giving our algorithm additional information 
about the form and constraints of our data, like the fact that 
no entries will ever be negative, helps it converge and come to 
a sensible result.

10 See https://arxiv.org/abs/1010.1763.

11 One possibility is to use the Frobenius distance, an extension of the 

Euclidean distance to matrices. In practice, regularization parame-

ters are added to the cost function to avoid overfitting.
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3.1.2.1 Singular Value Decomposition (SVD)
Another algorithm often discussed along with matrix fac-

torization is SVD. Conventional SVD of a matrix factorizes it 
into a product of three matrices. In the context of an interac-
tion matrix, one can interpret the first matrix as describing 
the interaction between users and features, the second as de-
scribing the interaction between items and features, and the 
third as a weighting matrix. In contrast to NMF, conventional 
SVD is a theoretical solution that gives an exact decomposi-
tion and is only defined for a fully specified matrix. Given that 
most historical rating matrices were sparse, early recommen-
dation systems had to replace missing data with substitute 
data in order to use SVD. This distorted the data and increased 
computational complexity. As a result, conventional SVD is 
not commonly used in recommendation systems today.

Simon Funk’s version of SVD (of Netflix Prize fame) is a 
spin on the traditional, where only only observed historical 
data is fitted.12 By fixing the number of features used to esti-
mate the original interaction matrix, the algorithm works to 
decompose it into two smaller matrices. Today when SVD is 
mentioned in the literature, it generally refers to this modi-
fied version. When a nonnegativity constraint is not import-
ant, SVD is a popular algorithm because of its accuracy and 
scalability.

12 The solution is obtained by using gradient descent to minimize a 

cost function based on squared error between the observed and esti-

mated ratings. In practice, regularization and bias terms are added to 

the cost function.
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3.1.2.2 Principal Component Analysis (PCA)
Another algorithm that can be used to extract features to 

represent the interaction matrix is PCA. To understand PCA, 
take a look at figure  3.8, which shows some data points plot-
ted in a two-dimensional space. The direction (or vector) that 
explains the most variability in the data is denoted by the lon-
ger orange line. The remaining variability is explained by the 
shorter orange line. PCA works by finding and ranking these 
vectors; they are called "principal components" and can be 
used to recover the original data. PCA is useful when one is 
trying to identify important components and ignore noise in 
the data. This can be achieved by using the top principal com-
ponents (instead of all) to build an estimator for the original 
dataset.

Using PCA in a recommendation system is straightfor-
ward — it is applied to the interaction matrix and the top k 
principal components are used to construct an approxima-
tion of the historical matrix. Similar to the number of factors 

Data Principal components

figure 3.8 PCA analysis extracts the directions with the most 

variability in the data.
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represent the interaction matrix is PCA. To understand PCA, 
take a look at figure  3.8, which shows some data points plot-
ted in a two-dimensional space. The direction (or vector) that 
explains the most variability in the data is denoted by the lon-
ger orange line. The remaining variability is explained by the 
shorter orange line. PCA works by finding and ranking these 
vectors; they are called "principal components" and can be 
used to recover the original data. PCA is useful when one is 
trying to identify important components and ignore noise in 
the data. This can be achieved by using the top principal com-
ponents (instead of all) to build an estimator for the original 
dataset.

Using PCA in a recommendation system is straightfor-
ward — it is applied to the interaction matrix and the top k 
principal components are used to construct an approxima-
tion of the historical matrix. Similar to the number of factors 

Data Principal components

figure 3.8 PCA analysis extracts the directions with the most 

variability in the data.
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in NMF and the number of features in SVD, the number of 
components in PCA is a knob that can be adjusted to trade off 
the amount of information used and computation tractability. 
In practice, it is optimized along with other hyperparameters.

3.1.3 Extensions to Factorization and Collaborative  
Filtering

Of the two approaches we’ve discussed, matrix factoriza-
tion algorithms are more widely adopted because they scale 
well to large datasets. Unfortunately, both approaches are un-
able to make predictions for users with very few ratings — but 
when we shift gears and model user feedback in a probabilis-
tic setting (vs. deterministic, as we have been doing so far), it 
is possible to find a solution that scales, works well on sparse 
and imbalanced datasets, and performs well when offering 
predictions for users with few ratings.

Similar to other matrix factorization methods, we start 
by assuming that user preferences are determined by a small 
number of unobserved factors and that items are represented 
by the same set of factors. The original interaction matrix can 
then be decomposed into two smaller feature matrices, a us-
er-feature matrix and an item-feature matrix. As implied by 
their names, the user-feature matrix provides information on 
the interaction between users and features, and the item-fea-
ture matrix provides information on the interaction between 
items and factors. A user-item interaction is just a linear com-
bination of the two feature matrices. In previous matrix fac-
torization models these feature matrices are deterministic; 
in a probabilistic setting we assume they follow some prob-
abilistic distribution. As a result, the observed interaction is 
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also probabilistic, and its outcome is dependent on the two 
matrices.

An example of such an approach is probabilistic matrix 
factorization (PMF).13 In PMF, we first assume that the us-
er-feature and item-feature matrices both follow a Gaussian 
process. Given the observed interactions, PMF finds the pa-
rameters that make the two feature matrices most probable in 
explaining these interactions.14 Interestingly, this approach 
can be thought of as the probabilistic extension of SVD, since 
the formulation reduces to SVD if all ratings can be observed. 
PMF has been shown to perform well on large, sparse, and 
imbalanced datasets where some users have interacted with 
many items and others only a few items.

To add to the model zoo, even PMF has many extensions 
to it. Bayesian PMF,15 for example, provides distributions in-
stead of point estimates for the feature matrix. This means 
that we have a sense of uncertainty for the resulting user-item 
preferences and can use that uncertainty either to make more 
motivated recommendations or to help our system know the 
best questions to ask our users to get a better understanding 
of them. Also, based on of the success of neural networks'  

13 See https://www.cs.toronto.edu/\~amnih/papers/pmf.pdf.

14 In PMF, we assume both U and V follow a Gaussian process with 

zero mean (in other words, they have Gaussian priors). The likelihood 

of observing a rating given (U, V) is also Gaussian. When we fix the 

observation noise variance and prior variances, the maximization 

with respect to (U, V) is equivalent to minimizing the sum of squares 

error function with quadratic regularization terms.

15 See https://www.cs.toronto.edu/~amnih/papers/bpmf.pdf.
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incredibly nonlinear systems, there is nonlinear matrix factor-
ization,16 which aims to capture more robust features from the 
interaction data.

3.1.3.1 Hybrid Collab/Factorization Methods
Recommendation systems based on collaborative filter-

ing and matrix factorization suffer from the cold start prob-
lem — they only work on items users have interacted with. 
For example, news article recommendation systems cannot 
recommend an article unless enough people have interacted 
with it and the system has been rerun to include these inter-
actions. In addition, collaborative filtering methods in partic-
ular are affected by the sparsity problem, since these methods 
need enough data to be able to determine similarity between 
users. Items interesting to a niche group are difficult to rec-
ommend; items liked by many are overly recommended.

What if we add more information to the recommenda-
tion system, so that it understands what an item is, and what 
a user is? Instead of representing Chamber of Secrets as item 
i, we can represent it using two features, "Young Adult" and 

"Fantasy." Similarly, we can represent Bob using "Male" and 
"Age 30." The interaction matrix no longer contains interac-
tions between users and items, but interactions between user 
features (in each row) and item features (in each column).17 
With this new interaction matrix, we can proceed to use ei-
ther collaborative filtering or matrix factorization to obtain 

16 See http://people.ee.duke.edu/\~lcarin/MatrixFactorization.pdf.

17 These features can be fitted numerically (using regression, for 

example) or manually encoded.
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recommendations. Since the resulting recommendations are 
for features, they need to be converted to item recommenda-
tions via mapping and aggregation.

The hybrid system alleviates both the cold start and spar-
sity problems. When a new user or item enters the system, it 
is no longer "new" because it can be represented by the exist-
ing user or item features in the recommendation system. In 
addition, because many items now map onto a common set 
of item features (and similarly, many users onto a set of corre-
sponding user features), the interaction matrix is more dense 
and results are explainable.

3.1.3.2 Adding Heuristic Combinations of Things
It’s important to note that by adding metadata to the un-

derlying recommendations, additional information can be 
considered in the prediction after the fact.

A common way to do this is by calculating a secondary 
score for the metadata that is desired and multiplying that 
by the score calculated with the recommendation system. For 
example, if we wish to constrain recommendation results to 
be geographically close to the user, we can calculate a score 
describing how close a result is to the chosen location. How-
ever, it is important to make a motivated decision about how 
this score is normalized.

If, for example, we normalize all the geographic scores 
from [0, 1], then geography can never increase the value for a 
particular item. So, if we are showing these scores to the user 
we must account for the fact that this geography score will, by 
definition, lower the values for all items. On the other hand, 
if we only require the score to be positive, then we must be 
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aware that sometimes we will recommend suboptimal items 
because they are close to the chosen location. This would 
result in recommending a restaurant that is geographically 
close to a user, regardless of whether or not they would like it.

Generally, the solution to this is training a recommenda-
tion system without knowledge of geography, or whatever the 
secondary metadata is, and then fitting a separate model to 
learn how to combine the scores.

3.1.4 Neural Network Approaches
Deep learning’s success when applied to visual and speech 

recognition problems has motivated practitioners and re-
searchers to use neural networks for recommendations.18 
Neural networks are promising because they can not only 
handle historical interaction data, but easily process unstruc-
tured information such as text, images, audio, or even things 
as abstract as how an object moves. In addition, neural net-
works are powerful at doing their own feature engineering in 
order to figure out for themselves what is important or not 
within that data. This, coupled with their nonlinearity, helps 
them uncover the relationships between objects.

In practice, these networks can be used as standalone 
systems or combined with traditional techniques to achieve 
better performance. For example, we can use embeddings 
to create deep representations for objects which can then be 
used with a k-NN algorithm to find the k best recommenda-
tions (3.1.1.1 k-Nearest Neighbor (k-NN)). Alternatively, ses-

18 See for example https://arxiv.org/abs/1707.07435 and http://

dlrs-workshop.org.
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sion-based networks using recurrent neural networks can 
directly predict the next object that should be recommended 
without the use of auxiliary algorithms.

3.1.4.1 Embeddings
Embeddings and matrix factorization share the point 

of view that we should enrich the user-item representa-
tions we use in our recommendation systems with meta-
data.19 However, one problem with matrix factorization 
methods is that they generally can only extract global 
structure from the problem. For books, that would mean 
they can extract some sense of genre, but won’t under-
stand how books within the same genre differ and interact. 

Neighborhood models are most effective at detecting 
very localized relationships. They rely on a few signifi-
cant neighborhood relations, often ignoring the vast ma-
jority of ratings by a user. Consequently, these methods 
are unable to capture the totality of weak signals encom-
passed in all of a user’s ratings. Latent factor models are 
generally effective at estimating overall structure that re-
lates simultaneously to most or all items. However, these 
models are poor at detecting strong associations among a 
small set of closely related items.20

— Yehuda Koren, 2009

19 See https://papers.nips.cc/paper/5477-neural-word-embed 

ding-as-implicit-matrix-factorization.

20 From  http://www.academia.edu/download/34418810/Recom 

mender-Systems-Netflix.pdf.
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This is where modern embedding models thrive: they are 
able to understand not only global structure (i.e., how vari-
ous genres compare to one another) but also structure on a 
smaller scale (i.e., how various books within a genre compare 
to one another). Furthermore, the way they do this is consis-
tent at all levels. Because of this, we are able to think of the 
space that they create as a semantic space — it encodes deep 
features about the objects in a feature-rich way that can be 
used to exploit their fundamental properties.

Turning back to our work in FF04 as an example, the word 
embeddings we discuss there create a space where all words 
relating to capitals of countries are in the same region as one 
another, and this cluster is close to the cluster that contains 
all of the country names. At the same time, the path to get 

Washington, D.C. - USA + France = Paris

Washington,
D.C.

USA

Germany

France

Berlin

Paris

figure 3.9 Word2vec encodes words as vectors with local and 

global structure, allowing word analogies to be solved through 

arithmetic.
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from the point for "United States" to the point for "Washing-
ton, DC" is similar to the one from "France" to "Paris" and, to 
some degree, from "New York" to "Albany." This is the sort of 
rich structure we expect from a semantic embedding space.

In that report, we also go through how to train such a se-
mantic embedding space on text. The training procedure for 
recommendations is quite similar. We can think of each word 
in our text model as corresponding to an object from our rec-
ommendations dataset, and each sentence as corresponding 
to the set of objects a single user has interacted with. Each ob-
ject, however, is represented by some description of it. As a 
result, each user is represented by a sequence of descriptions.

This is where things start changing, because we are using a 
multimodal model instead of a unimodal model. Our two mo-
dalities are items and users, and they can both be represented 
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Description
of Python
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of Javascript
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Description
of Chamber
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of liked items
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figure 3.10 For recommendations, a user can be embedded as a 

sequence of descriptions of items they interacted with.
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in different ways using different types of data.21 In order to do 
this, we pick a user representation, remove any reference to a 
random selection of objects in that user’s history, and create 
a single encoding for that user. Separately, we encode one of 

21 In the prototype we discuss in 4 Prototype, we represent a book 

by its summary and a user by the sequence of books, each represent-

ed by its own summary, that the user has reviewed. This choice was 

made for simplicity, and in reality the representations used for both 

objects can be completely different.
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figure 3.11 Example of how a sequence of user interactions is 

turned into multiple training samples for our multi-modal model.
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the items that we removed. The model is rewarded if the user 
encoding and the item encoding are close to one another. At 
the same time, we also randomly sample items that user has 
never interacted with and penalize the model if the user-se-
quence encoding and the random-item encoding are close to 
one another.

With these embeddings fully trained, we are able to make 
recommendations using standard k-nearest neighbor ap-
proaches by simply encoding a user’s history and finding 
items that encode to similar values. Another benefit of a sys-
tem like this is that it is truly flexible and allows all sorts of 
additional usages. Items or users can be added or subtracted 
in order to allow for better exploration of the catalogue, and 
users can be recommended to users based on similar prefer-
ences. The system provides a general way of understanding 
how users and items interact with one another in a consistent 
way.

Furthermore, the system is able to find deep features with-
in the objects and embed them, purely based on their raw 
data. The cold start problem is no longer an issue, because the 
only input for the recommendation system is the metadata or 
description of the item. This method is powerful enough to be 
used as a recommendation system whose input is raw audio 
signals!22

3.1.4.2 Session-Based Methods
Session-based deep learning methods try to use neural 

networks to help in cases when users don’t necessarily in-

22 See https://arxiv.org/abs/1706.09739.



52  How Do Recommendations Work?

in different ways using different types of data.21 In order to do 
this, we pick a user representation, remove any reference to a 
random selection of objects in that user’s history, and create 
a single encoding for that user. Separately, we encode one of 

21 In the prototype we discuss in 4 Prototype, we represent a book 

by its summary and a user by the sequence of books, each represent-

ed by its own summary, that the user has reviewed. This choice was 

made for simplicity, and in reality the representations used for both 

objects can be completely different.

Item 1
4 stars

Item 2
3 stars

Item 1
4 stars

Item 2
3 stars

Item 3
5 stars

Item 4
2 stars

Item 5
1 star

Item 20
?

Item 5
?

Item 3
5 stars

Item 4
2 stars

Item 1
4 stars

Item 4
?

Item 5
1 star

Item 1
4 stars

Item 3
5 stars

User embedding

Training with user embedding

,

,

,

Input Output

1 star

2 stars

0 stars

figure 3.11 Example of how a sequence of user interactions is 

turned into multiple training samples for our multi-modal model.

How Do Recommendations Work?  53

the items that we removed. The model is rewarded if the user 
encoding and the item encoding are close to one another. At 
the same time, we also randomly sample items that user has 
never interacted with and penalize the model if the user-se-
quence encoding and the random-item encoding are close to 
one another.

With these embeddings fully trained, we are able to make 
recommendations using standard k-nearest neighbor ap-
proaches by simply encoding a user’s history and finding 
items that encode to similar values. Another benefit of a sys-
tem like this is that it is truly flexible and allows all sorts of 
additional usages. Items or users can be added or subtracted 
in order to allow for better exploration of the catalogue, and 
users can be recommended to users based on similar prefer-
ences. The system provides a general way of understanding 
how users and items interact with one another in a consistent 
way.

Furthermore, the system is able to find deep features with-
in the objects and embed them, purely based on their raw 
data. The cold start problem is no longer an issue, because the 
only input for the recommendation system is the metadata or 
description of the item. This method is powerful enough to be 
used as a recommendation system whose input is raw audio 
signals!22

3.1.4.2 Session-Based Methods
Session-based deep learning methods try to use neural 

networks to help in cases when users don’t necessarily in-

22 See https://arxiv.org/abs/1706.09739.



54  How Do Recommendations Work?

teract with many items. For example, if I have a large e-com-
merce website and dozens of interactions for each user in my 
dataset, matrix factorization may do a good job of extracting 
some relevant features about their preferences. However, if I 
have a small e-commerce website without much history for 
my users, matrix factorization simply won’t be able to extract 
enough information from my dataset to be useful.

Another appeal of session-based methods is how some 
variants can take into account the temporal nature of ses-
sion-based data. For example, they can see that a user is first 
reading a general algorithms book, then a book specifically 
on neural networks, and use that trajectory to recommend a 
good next step.

3.2 What This All Means
Clearly, the scope of recommendation algorithms is quite 

wide; however, they all share a common scheme: find some 
representation for the objects you are recommending and 
then, to make a recommendation for a given object, find 
objects with a similar representation. While the methods 
described here may seem to vary greatly, from the simplici-
ty of collaborative filtering to the complexity of multimodal 
embeddings, they all follow this same pattern; the question is 
which one can make a robust enough representation for your 
data.

It’s important to be aware of this breadth because at this 
point in the field of recommendations there is no way to know 
just by looking at your data which method will return the best 
results. Therefore, when building any recommendation sys-
tem, it is necessary to start with the simplest approach and 
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work your way up in complexity, testing at every step to make 
sure that the additional complexity is in fact helping your sys-
tem better understand your data. In 4.2 Model, we discuss the 
multimodal model we chose, how we evaluated it, and how 
we compared it to the simpler approaches.



54  How Do Recommendations Work?

teract with many items. For example, if I have a large e-com-
merce website and dozens of interactions for each user in my 
dataset, matrix factorization may do a good job of extracting 
some relevant features about their preferences. However, if I 
have a small e-commerce website without much history for 
my users, matrix factorization simply won’t be able to extract 
enough information from my dataset to be useful.

Another appeal of session-based methods is how some 
variants can take into account the temporal nature of ses-
sion-based data. For example, they can see that a user is first 
reading a general algorithms book, then a book specifically 
on neural networks, and use that trajectory to recommend a 
good next step.

3.2 What This All Means
Clearly, the scope of recommendation algorithms is quite 

wide; however, they all share a common scheme: find some 
representation for the objects you are recommending and 
then, to make a recommendation for a given object, find 
objects with a similar representation. While the methods 
described here may seem to vary greatly, from the simplici-
ty of collaborative filtering to the complexity of multimodal 
embeddings, they all follow this same pattern; the question is 
which one can make a robust enough representation for your 
data.

It’s important to be aware of this breadth because at this 
point in the field of recommendations there is no way to know 
just by looking at your data which method will return the best 
results. Therefore, when building any recommendation sys-
tem, it is necessary to start with the simplest approach and 

How Do Recommendations Work?  55

work your way up in complexity, testing at every step to make 
sure that the additional complexity is in fact helping your sys-
tem better understand your data. In 4.2 Model, we discuss the 
multimodal model we chose, how we evaluated it, and how 
we compared it to the simpler approaches.



56  How Do Recommendations Work? Prototype  57

 
 
 
chapter 4
Prototype

4.1 Data
For our prototype, we decided to use the Amazon book 

recommendations dataset.1 This dataset contains 41.13 mil-
lion reviews, where every book/user has at least 5 reviews 
associated with it. After heavy filtering, we reduced the set 
to 254,932 books reviewed by 603,668 users. This filtering 

1 See http://jmcauley.ucsd.edu/data/amazon/.

figure 4.1 The values for the ratings are skewed towards 5 stars.
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was necessary because of the abysmal data quality: most us-
ers only give 5-star ratings and the number of ratings users 
provide follows a power law (meaning there are half as many 
4-star ratings as 5 stars, half as many 3-star ratings as 4 stars, 
and so on).

Another pain point with the dataset is the amount of noise 
in the book summaries. Many of the books have incredibly 
short and noninformative summaries. Another large portion 
of the books have very long summaries that consist mainly of 
quotes from critics or author biographies. In addition, a ma-
jority of the books' summaries have encoding errors which 
result in meaningless characters being spread throughout 
the text. Our favorite example of these errors is one book  
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figure 4.2 A small group of users writes the majority of the 

reviews.
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summary which is quite descriptive, but doesn’t contain any 
spaces or punctuation!

As a result, our model is an example of working in an 
extreme situation where there is no quality control over the 
data. In most applications, application designers can remedy 
this lack of quality because of their control over the environ-
ment. In this case, however, that was not possible.

4.2 Model
One of the hardships in creating a model to deal with user 

interactions through book summaries is the number of se-
quences we need to deal with. First, there is the sequence of 
words within the summary of one book. We wanted to model 
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figure 4.3 Many books have short and uninformative 

summaries.
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this as a sequence since the summaries have variable length 
(we initially hoped to avoid truncating them, but in the end 
this was unavoidable, as we discuss in 4.2.3 Failures). Fur-
thermore, we wanted to take advantage of the word order in 
the summaries. In addition to this sequence, there is also the 
user history, which is represented as a sequence of books that 
a user has interacted with; this again is a variable-length se-
quence where order could potentially be relevant. Since we 
represent each book with a sequence of words, this means 
that the user history is a sequence of sequences.

Luckily, we can use recurrent neural networks, discussed 
in FF04, to learn from this sequential data without losing 
potentially valuable temporal information such as word or 
book order. In addition, we’re able to use the modular nature 
of neural networks to reuse and share information between 
parts of the model. That is to say, the segment of the model 
that learns how to understand a particular book summary can 
also be reused to understand the books within a user’s history.

The first example of this modular structure is with the 
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figure 4.4 The structure of the attention mechanism in the 

model.
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attention mechanism we use to focus the model. When-
ever we input a book description, represented as a sequence 
of word2vec vectors, we first filter that data through a set of 
layers that reweights the input so that the model can learn 
to ignore certain concepts or focus on others. This attention 
model is not a global feature — which is to say, it doesn’t learn 
to always downweight a particular word. Instead, it learns to 
weight words based on their context.

This attention mechanism has two benefits. First, it focus-
es the neural network so that it can concentrate on the data 
that is important for the particular input it is considering, 
effectively reducing noise. Second, it helps the users under-
stand why a certain prediction is made. By introspecting in-
side the model when being shown a particular example, we 
can see which words it chooses to look at and which it ignores, 
giving us information that can be shown to the user. These 
sorts of attention mechanisms are used in many places where 
understanding why a neural network makes a decision is 
important, and this is seen as the leading method in making 
neural networks interpretable.2

Having now a sense of which parts of the book description 
were important, we wanted to reduce this large sequence into 
something more manageable. For this, we created another 
submodule for our larger model that takes this reweighted se-
quence, feeds it through several layers of recurrent networks, 
and outputs a fixed-length vector (which was chosen to be 256 
elements in length after some experimentation).

2 See "Interpretability" (FF06), available at http://fastforwardlabs.

com/research/FF06, for more on this subject.
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At this stage, we had a way of turning a book summary of 
arbitrary length into a fixed-sized vector that encodes its con-
tent. This would have been enough for a unimodal model that 
simply looked at how books are related to other books, but we 
wanted to incorporate user histories, or sequences of books 
with ratings associated with them. Our solution was to take 
the embedding for a user (which consists of multiple book 
embeddings, one for each book they’ve reviewed), multiply it 
with the ratings that user has given the books they’ve read, 
and feed it into another recurrent network that is meant to 
find a single vector representing the user. This resulting vec-
tor is the same size as the vector for a single book.

We finally have all the working pieces we need. We have 
a 256 element vector embedding for a book, and we also can 
create an embedding of a user’s history into a vector embed-
ding with the same size. All told, this model takes 1,610,652 
parameters, which is fairly modest given the complexity of 
the operations being performed. The model is now trained  
 

figure 4.5 The description is transformed into a manageable 
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so that the dot product between these two embeddings is as 
close to that user’s rating for the book as possible.

This procedure not only gives us a way to train the model 
using the available book ratings from the dataset, but also forc-
es the vector embeddings of similar books/users to be close to 
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each other. As a result, when we want to perform recommen-
dations on books/users in the future, we simply need to do a 
k-nearest neighbor search on the book/user embeddings, the 
values of which can be precalculated. This is similar to what is 
done for hybrid collaborative filtering (02-hybrid), but we are 
using a much more robust model than matrix factorization.

4.2.1 Training
We chose to use a skip-gram-like approach, described in 

FF04, to train our model. This means we randomly sample a 
book and rating from the user’s history to use as the target 
of the model and then take a random number of the remain-
ing books to represent the history. This is done many times 
for each user, so we are able to augment each user’s history 
with different permutations. Furthermore, we randomly sam-
ple books that the user has never interacted with in order to 
generate negative samples. As described in 2.2.3 Missing Data 
and Evaluation, this sort of approach can be problematic, but 
in the case where we have no access to the users generating 
the data it’s the only approach possible.

In order to deal with performance issues, all of the sum-
maries in all of the skip-grams, in their word2vec format, 
were cached and saved to an hdf5 file.3 The resulting two files 
are 821 GB (2,257,588 samples) for training and 35 GB (98,414 
samples) for validation. Even with this precaching, each ep-
och took 1.5 hours (with an average of 58 epochs required) 
to converge. However, without caching it would have taken  
 

3 Using the h5py package; see http://h5py.org.

Prototype  65

~6 hours per epoch, and without a GPU (but with caching) it 
would have taken 117 hours per epoch!4

These long training times show the necessity of having 
multiple GPUs when developing these models. The model 
exploration and hyperparameter tuning phases both require 
training many models and seeing which perform best on the 
data. Each one of these models can be trained independently 
of the others and training can thus be parallelized simply by 
launching more training operations. So, having eight GPUs 
means that the process can happen eight times faster. One of 
the major limitations to our model was the time constraint 
in this exploration phase, which could have been remedied 
by having more GPUs available. AWS’s p2.*xlarge instances, 
Paperspace’s dedicated GPU instances,5 and other cloud com-
puting services help tremendously in this area.

4.2.2 Evaluation
In order to evaluate our model, we chose to look at the root-

mean-squared error (RMSE) between our predicted rating that 
a user would give a book and the actual rating. Furthermore, 
we made sure that there was no leakage between our training 
set and our testing set: no users or books are shared between 
the two sets of data. While this is the correct way to separate 
out the training and testing data, it also greatly reduces the 
sizes of each dataset. Results from our model comparison  

4 Our tests were done with an NVIDIA Tesla Titanium and an Intel 

Xeon CPU E5-2620v3.

5 Paperspace is a cheap by-the-hour cloud provider that provides 

the newest NVIDIA GPU, the Volta.
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between our bi-modal model and other classic approaches to 
recommendations are shown in the table 4.1.

In comparison with classic methods, our Bi-Modal model 
performed quite well! An RMSE of 0.09 means that, on av-
erage, our prediction for a rating is off by 0.04 stars (where 
books are rated from 1-5 stars). On the other hand, because of 
class imbalances, a random prediction of ratings would be off 
by 0.722 stars.

One feature we see in the results is how much better the 
recommendation algorithms that somehow use properties 
of the items are, as opposed to those that use just an ID. For 
example, using Spotlight’s matrix factorization on only book 
IDs results in a worse-than-random result; however, factoring 
in the subjects of the books gives us the best results from the 
classic methods.

This also gives us an indication as to why the Bi-Mod-
al model has such a jump in performance compared to the 
other models. The number of books being considered in the 
catalogue is quite large and the number of interactions quite 
small in comparison. With only the book IDs, there simply is 

table 4.1 Evaluation Results. Scores are normalized between 0 

and 1.
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not enough interaction information to find common trends. 
By augmenting this data with the book subject, we are able to 
leverage information we know about genres in order to make 
inferences about books that may not have been interacted with 
that much. In the extreme case, our Bi-Modal model makes 
use of the summary, a much richer set of metadata than just 
the subject, allowing us to extract nuances that genre simply 
can’t capture (for example, the similarity between computer 
books and certain types of sci-fi).

4.2.3 Failures
While the final model we created for the prototype did well 

in comparison to the classic methods (table 4.1), there were 
many things that didn’t go as expected. One of the problems 
stemmed from the results for user embeddings.

In our description of the overall model structure, we 
planned to take advantage of the sequence of books a user 
reviewed to create an embedding for users. As explained be-
fore, the benefit would be that both users and books would be 
embedded into a similar space and distances between them 
would be meaningful. However, while book-to-book distanc-
es and user-to-user comparisons performed very well, user-to-
book comparisons did not. The distances between books and 
users were always large, indicating that the model learned to 
create structure for books separately from the structure for 
users (i.e., books were all in one cohesive cluster and users 
were in another).

The most compelling explanation for this is that the mod-
el simply did not converge fully. Neural networks tend to con-
verge from the bottom up (layers near the input layer converge 



66  Prototype

between our bi-modal model and other classic approaches to 
recommendations are shown in the table 4.1.

In comparison with classic methods, our Bi-Modal model 
performed quite well! An RMSE of 0.09 means that, on av-
erage, our prediction for a rating is off by 0.04 stars (where 
books are rated from 1-5 stars). On the other hand, because of 
class imbalances, a random prediction of ratings would be off 
by 0.722 stars.

One feature we see in the results is how much better the 
recommendation algorithms that somehow use properties 
of the items are, as opposed to those that use just an ID. For 
example, using Spotlight’s matrix factorization on only book 
IDs results in a worse-than-random result; however, factoring 
in the subjects of the books gives us the best results from the 
classic methods.

This also gives us an indication as to why the Bi-Mod-
al model has such a jump in performance compared to the 
other models. The number of books being considered in the 
catalogue is quite large and the number of interactions quite 
small in comparison. With only the book IDs, there simply is 

table 4.1 Evaluation Results. Scores are normalized between 0 

and 1.

Prototype  67

not enough interaction information to find common trends. 
By augmenting this data with the book subject, we are able to 
leverage information we know about genres in order to make 
inferences about books that may not have been interacted with 
that much. In the extreme case, our Bi-Modal model makes 
use of the summary, a much richer set of metadata than just 
the subject, allowing us to extract nuances that genre simply 
can’t capture (for example, the similarity between computer 
books and certain types of sci-fi).

4.2.3 Failures
While the final model we created for the prototype did well 

in comparison to the classic methods (table 4.1), there were 
many things that didn’t go as expected. One of the problems 
stemmed from the results for user embeddings.

In our description of the overall model structure, we 
planned to take advantage of the sequence of books a user 
reviewed to create an embedding for users. As explained be-
fore, the benefit would be that both users and books would be 
embedded into a similar space and distances between them 
would be meaningful. However, while book-to-book distanc-
es and user-to-user comparisons performed very well, user-to-
book comparisons did not. The distances between books and 
users were always large, indicating that the model learned to 
create structure for books separately from the structure for 
users (i.e., books were all in one cohesive cluster and users 
were in another).

The most compelling explanation for this is that the mod-
el simply did not converge fully. Neural networks tend to con-
verge from the bottom up (layers near the input layer converge 



68  Prototype

sooner), and the book-to-book as well as the user-to-user em-
beddings show signs of individually having converged in the 
final model (this was seen by observing the distances between 
the final embedding values; user-user embeddings had close 
proximity as did item-item, however user-item embeddings 
remained far away from each other). More data could help 
with this, or simply a variation on the model structure we 
chose. However, because of the time necessary to train each 
new variation, we weren’t able to continue our model search.

Another general limitation of our model is that we had to 
truncate the summaries of books to 64 words, a value chosen 
for the resource implications of the training procedure and 
the observation that many summaries devolve into quotes 
and awards after this many words. This truncation happens 
after we do some filtering, but it still requires us to throw away 
a lot of potentially useful information (further contributing 
to our problems with convergence). This filtering was a nec-
essary way to speed up model training because of our limited 
time frame. Generally, filtering tricks like this are used to ac-
celerate training for a model survey, and then the full dataset 
is used to train the final model. However, in our case training 
the final model with the full dataset would have been too slow 
to be useful. By truncating the data we were able to precache 
all of the word-vector inputs to the model and store them to 
an hdf5 file, a format which Keras can read quickly; moving to 
the full dataset would have required us to compute these word 
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4.3 Product: Deep Bargain Book Shop
The simplest interface for a recommendation system is a 

list of recommendations. For our prototype, we started with a 
list, but quickly realized we needed to provide the user more 
context about how our recommendation system worked. To 
do that we turned to a dimensionality reduction algorithm to 
help us visualize the system.

4.3.1 Visualizing the System
We used a technique called called t-distributed Stochas-

tic Neighbor Embedding (t-SNE) to create a visualization of 
our recommendation system. t-SNE diagrams have become 
popular with data scientists that work with neural networks 
as a tool for understanding how a model is making its deci-
sions. Using t-SNE, you can take the multi-dimensional re-
lationships encoded in a model and reduce them down to a 
two-dimensional plot.

figure 4.7 An early version of the prototype with the t-SNE  

diagram on the left.
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The t-SNE visualization for our prototype represents each 
book in the recommendation system as an x,y coordinate. 
Similar books (as determined by the model) are near one an-
other. This representation dovetails with our natural human 
spatial reasoning abilities, providing an intuitive way to ex-
plore a system.

Anytime you use t-SNE to explore a system, it is import-
ant to remember that it is necessarily a simplified represen-
tation of that system. Our model is comparing book descrip-
tions across 256 dimensions. The t-SNE technique tries to find 
the best way to reduce those relationships down to just two 
dimensions.6 As long as you keep that limitation in mind, a 
t-SNE visualization can be a great general guide to a system. 
We used it both to help debug the system as we built it and, in 
the final prototype, to help explain the system to users.

Making the t-SNE visualization was challenging on sev-
eral levels. Generally what you hope to see in a t-SNE plot is 
some type of meaningful clustering, like books of the same 
genre being near each other. Whether you see clustering or 
not could be an indication about whether your model is work-
ing, or it could be an indication you haven’t found the right 
t-SNE parameters.7 Often, as in our case, t-SNEs take quite a 

6 The imprecision of the method can be seen in the final prototype 

where the recommended book rankings do not exactly correspond to 

their distance from the selectecd book in the t-SNE. The discrepancy 

is a consequence of compromises made among lost dimensions.

7 The interactive article How to Use t-SNE Effectively (https://distill.

pub/2016/misread-tsne/) provides a good overview of how different 

parameters affect the visualization
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long time to run, so the parameter search can involve a lot 
of waiting. We tend do a lot of small quick interation on our 
prototypes and t-SNE generation was not a natural fit for that 
process.

On the front-end side, interactively displaying all the 
points in the t-SNE was a technical challenge. More conven-
tional browser visualization techniques, like using an SVG 
or canvas element, bogged down when we threw more than 
5,000 points at them. We turned to the Three.js Javascript 
library which is focused on 3D graphics. Its use of WebGL 
(which uses your computer’s GPU) let us pack in over 200,000 
points without strain.8 In our final version, we reduced the 

8 You can read about how we used Three.js in our blog post:  

http://blog.fastforwardlabs.com/2017/10/04/uing-three-js-for-2d-

data-visualization.html.

figure 4.8 An early version of the prototype showing how a book 

the system has not seen before (Obama: An Intimate Portrait) is 

placed in relation to books already in the system.
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number of points down to 10,000 to make the file size of the 
data manageable.

Was the hard work worth it? We belive it was. The t-SNE vi-
sualization brought a layer of context to the prototype, show-
ing how recommendations based on one item fit into the larg-
er system. It also provided a nice illustration of our system’s 
star feature – its ability to make recommendations for an item 
it has never encountered before. As shown in the visualiza-
tion, it is able to do this by placing the new item, through an 
embedding of its text description, in relation to the items al-
ready in the system. The recommendations for that item are 
then simply the items "nearest" its position.

4.3.2 Deep Bargains
The t-SNE helped explain the technology underlying the 

prototype, but our prototypes are not solely technical demon-
strations. They are also designed to show the product possi-
bilities that tech creates. We knew that our system’s ability to 
make recommendations for new items, bypassing the cold-
start problem that many recommendation systems have, was 
a big deal, but we needed to do more to show that usefulness 
in the prototype.

We were also confronting an expectations problem. The 
Amazon reviews dataset we used for our prototype contained 
a limited number of books from a limited time period. If not 
framed properly, this could have a negative effect on how us-
ers viewed the recommendation results. While the system can 
make recommendations based on any arbitrary book, it can 
only draw those recommendations from books in its dataset. 
This might cause users to judge the recommendations overly 
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harshly, especially if they were comparing them to Amazon’s 
system, which has a much larger range of recommendation 
candidates to choose from.

We came up with a story for the prototype that explained 
the limited selection and also highlighted the model’s abili-
ty to make recommendations on new items. The prototype 
would be an imaginary online book shop, "Deep Bargain 
Books", whose eccentric owner had both a limited selection 
of bargain priced books and machine learning expertise. This 
scenario helped set expectations for the limited selection and  
 

figure 4.9 Deep Bargain Book Shop, an imaginary online book 

shop that helped us explain the strengths of the  

recommendation system.
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provided the backdrop for us to demonstrate some of the busi-
ness opportunities semantic recommendations can unlock.

The most obvious advantage of a semantic recommenda-
tion system to a business owner is the ability to add a new item 
to inventory and immediately integrate that item into the rel-
evant recommendations. Systems, like collaborative filtering, 
that rely solely on user and item interaction are unable to do 
that. The product possibilities go beyond expanding inven-
tory, however. In our prototype the recommendation system 
is the method for the user to explore the selection of books. 
To find books they are interested in, the user can search for 
a book they like and, provided there is a description for that 
book in the Google Books API, immediately view relevent 
recommendations for it. The front page features recommen-
dations based on current New York Times bestsellers. The 
recommendation interface becomes a method of navigating 

figure 4.10 The final prototype, featuring the customer view on 

the left and the admin view on the right.
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through the catalog, highlighting relevant in-stock books for 
the customer.

We finished the story of the book shop by moving the t-SNE 
visualization and further information about the recommend-
ed books into an "Admin" view. This was an acknowledge-
ment that while this information was useful in understanding 
the system, it could be overwhelming for the average custom-
er just looking for a book. The admin section also features 
the most extreme version of the model’s cold-start capabili-
ty — the option for the user to enter a freeform text descrip-
tion and see recommendations based on that description.

4.3.3 Further Product Possibilities

4.3.3.1 Marketing Tools
The ability to add your own custom description hints at 

more tools that could be built with semantic recommendation 
systems. A product directed at book publishers could provide 
feedback for choosing a description for a book. It could show 
the similarity between the chosen description and other al-
ready existing books. If you wanted a book to be recommend-
ed alongside Harry Potter you could tailor the description to 
try and do that. If you had user embeddings alongside the 
books, you could even see a prediction of the book’s audience 
based on the entered description.

4.3.3.2 t-SNE as Interface
So far t-SNEs are primarily being used as tools for data sci-

entists. We are optimistic about the opportunities for using 
visualizations as part of an interface for end users. They could 
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help users better understand the recommendations they 
are receiving and provide an intuitive way to make changes 
to their own taste profile. They can also help us understand 
how we explore a topic, as in our Wikipedia mapping project, 
Encartopedia.9 Making t-SNE interfaces approachable will 
require smart design work, and making them interactive in 
the browser will require heavily-optomized front-end code, 
but the payoff could be tremendous. As recommendation sys-
tems mediate more and more of our interactions, the desire of 
customers to understand just why they’re being shown what 
they’re being shown will grow. Thoughtful visualizations 
could step in to fill that need.

4.4 General Engineering Considerations
There are several engineering considerations in deploying 

a model like the one we implemented. First, the full model is 
quite big — while the model itself is only ~50 MB,10 we must 
also have our word2vec model loaded, which takes up 2.6 GB. 
In addition, we must have access to all of the book summa-
ries, which comprise another data structure of considerable 
size that must be stored in memory. These considerations, 
however, can be mitigated by good engineering practices: the 
word2vec model can be trimmed down and stored in an on-
disk database, as can the book summaries.

Still, the model very much wants to be run on a GPU. When 
encapsulated in an HTTP API, the total time to embed a book 

9 See http://encartopedia.fastforwardlabs.com/. Created by Sepand 

Ansari.

10 Note that this 50 MB will reside in the GPU memory.
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description using the GPU is 0.082s, while the same operation 
on a CPU takes 0.189s. This 2.3x slowdown may be justifiable 
in comparison to the cost of a GPU, but it also may make the 
difference between whether an application is feasible or not 
(for example, if you have 4 hours every night to precompute 
recommendations for your users, a 2.3x slowdown may sim-
ply make the process take longer than the allotted time).

Finally, model management can become an issue with 
these sorts of methods. During the hyperparameter tuning 
and model exploration phases, many dozens of models are 
trained, evaluated, and compared. Even after a final model is 
found, it is possible that this experimentation will continue 
as new data is created and the user feedback of the deployed 
models is considered. Having accountability as to what data 
the models were trained on is critical for this, since we don’t 
want to leak information from the training to the validation 
steps.

One method to help alleviate this is to have all param-
eters, links to data, and random seeds in a particular model 
be hardcoded into the model source and to pin a particular 
trained model to a commit hash in Git. This means that for 
any trained model, the model code at the proper commit hash 
can be checked out and rerun to produce the same results.
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chapter 5
Recommendation Vendors

Recommendation services fall into two broad categories: 
general purpose and purpose built. Some vendors will sell 
you an API that returns recommendations/predictions, and 
some vendors will tailor a solution to your business needs. A 
tailored solution (one would hope) ought to be more accurate 
and better suited to a specific domain. Note also that a state-
of-the-art recommender can take advantage of semantic in-
formation in the features that prior, less advanced, recom-
menders would ignore.

5.1 General-Purpose APIs
General-purpose APIs offer one-size-fits-all recommen-

dations or predictions with no (or little) adaptation to a given 
problem. This makes them easier to deploy, but there’s a slight 
performance cost in that a less-tailored configuration will not 
take advantage of domain-specific information. The larger 
APIs have no problems with scale and generally perform well.
 
5.1.1 Microsoft Cognitive Services

The Azure recommendations module1 is in preview at 

1 See https://azure.microsoft.com/en-us/services/cognitive-ser 

vices/recommendations/.
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the time of writing. It’s not fully integrated into Microsoft’s 
Cognitive Services ML platform yet, but it functions well 
independently.

Azure’s recommendation engine views the world from a 
product recommendation standpoint. The inputs to the mod-
el are a catalog file and a usage file. The catalog file contains 
the master list of products available and some basic informa-
tion about the products, like name, category (e.g., "Software," 

"Gaming," or "Services"), a description, and any additional 
features that are useful to your application. The usage file 
simply describes interactions that have taken place, includ-
ing the user, product, time, and (optionally) event type, such 
as purchase, click, or add to cart. Azure offers several options 
for training the model, allowing some control over mod-
el features, and provides insight into post-training model 
evaluations.

Azure has a convenient API explorer;2 it includes specifi-
cations for data formats and each operation (e.g., uploading 
data, training a model, and getting recommendations), as 
well as a testing console for each method that generates re-
quest code in several languages and shows you the responses 
from the API in real time. Microsoft also includes sample data 
to guide you through the process of using the API. This ex-
plorer makes it simple to get started with recommendations.

Overall, we found Azure’s API simple to set up and use, 
and it produced reasonable results fairly quickly.

2 See https://westus.dev.cognitive.micro soft.com/docs/services/

Recommendations.V4.0/.

Recommendation Vendors  81

5.1.2 Amazon Machine Learning
Amazon’s Machine Learning (ML) platform3 puts recom-

mendations under the rubric of predictions, a reasonable 
view given that a recommendation is in effect a prediction of 
what a user would like to see, buy, or otherwise interact with. 
The service is less focused on products than Azure’s, which is 
somewhat surprising in light of Amazon’s origins as a retailer.

Amazon’s recommendation engine is not as configu-
rable as Azure’s when it comes to training — for example, it 
trains all models using regression. Its data is somewhat more 
flexible, though. Input is from one master file uploaded to 
Amazon’s cloud storage service, S3. It takes only a list of us-
er-product interactions, but each interaction can include an 
arbitrary number of features used to train its models. The lack 
of a catalog file implicitly means that Amazon ML’s "catalog" 
is gleaned from the usage file itself, recognizing no products 
that have not been interacted with.4

Amazon ML can be configured through the AWS web con-
sole for setup and testing. It is not as simple to use as Azure’s 
offering, but it provides reasonable guidance and statistics 
on model quality. Once set up, it can be accessed through 
provided SDKs in several languages, including Java, Python, 
and JavaScript through Node.js.5 Android and iOS SDKs are 
also offered. Amazon ML currently runs only on machines in  
Amazon’s US East (Northern VA) and EU (Ireland) data centers, 

3 See https://aws.amazon.com/aml/.

4 This has implications for cold starting new products or users. They 

must be handled by comparisons of category alone.

5 See https://aws.amazon.com/aml/getting-started/.
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Recommendations.V4.0/.
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5.1.2 Amazon Machine Learning
Amazon’s Machine Learning (ML) platform3 puts recom-

mendations under the rubric of predictions, a reasonable 
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what a user would like to see, buy, or otherwise interact with. 
The service is less focused on products than Azure’s, which is 
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is gleaned from the usage file itself, recognizing no products 
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offering, but it provides reasonable guidance and statistics 
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provided SDKs in several languages, including Java, Python, 
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3 See https://aws.amazon.com/aml/.

4 This has implications for cold starting new products or users. They 

must be handled by comparisons of category alone.

5 See https://aws.amazon.com/aml/getting-started/.
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which could diminish request performance in other regions.
We found that Amazon ML was more difficult to set up 

than Azure, but was reasonably straightforward and had sim-
ilar performance.

5.1.3 Google Cloud Prediction
For now, Google offers its Cloud Prediction API using 

Spark. We did not evaluate this product in depth, though, 
since Google has declared that it will no longer support its 
prediction service after April 2018. Google refers Prediction 
API users to its Cloud Machine Learning Engine using Tensor-
Flow,6 and has admitted that Cloud Prediction was unmain-
tained and had few users.7 This suggests that Google has little 
interest in serving recommendation customers.

5.2 Smaller Vendors
In addition to the Goliaths of web services above, there 

are numerous smaller vendors that provide recommendation 
APIs. Some are more specialized than others. We list some of 
these vendors below.

5.2.1 Domain-Focused API Vendors
Certain APIs are targeted at specific types of recommen-

dations. Fashion is one special case, because the recommen-
dations must be adaptable to temporal constraints (fashion 
products expire much more quickly than, say, books, movies, 

6 See https://cloud.google.com/solutions/recommendations-us 

ing-machine-learning-on-compute-engine.

7 See https://news.ycombinator.com/item?id=14343389.
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or tools). Offerings in this area include:

• Vue.ai (https://vue.ai/) - Vue mainly targets the fashion 
industry, but also handles other retail outlets (furniture, 
for example).

• Apptus (https://www.apptus.com/customer-success/cus 
tomers) - Similar to Vue, Apptus’s clients include several 
in the fashion industry and a lot of well-known retailers.

Other Vendors
The vendors below offer recommendation services that 

are less directed to a specific domain:

• Rich Relevance (https://www.richrelevance.com/) - Rich 
Relevance is a personalization vendor whose platform 
includes a recommendation engine. They have a number 
of high-profile clients across a broad range of industries, 
including fashion, food, and electronics.

• YUSP (http://www.yusp.com/solutions/) - Like Rich 
Relevance, YUSP offers a personalization engine with a 
recommender included. Its engine is adaptable for prod-
uct recommendations, email campaigns, coupons, and 
in-store interactions.

• Strands Retail (http://retail.strands.com/) - Strands Retail 
offers a recommendation API in the form of a JavaScript 
library. The library can be used to add recommendations 
to websites and emails, adapted for user needs.

• 4-Tell (https://get4tell.com/) - 4-Tell offers business-to- 
consumer and business-to-business platforms. Its offer-
ing includes inline search completion recommendations 
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and email content recommendations.
• Recombee (https://www.recombee.com/) - Recombee of-

fers a general-purpose recommendation engine through 
its API. Packages are provided for most popular languag-
es, including Python, Ruby, Java, and Node.js.

• Tamber (https://tamber.com/) - Tamber claims that its API 
uses state-of-the-art algorithms, tuned for maximum per-
formance, and avoids feedback loops and addresses the 
cold start problem. The API libraries are offered in many 
popular programming languages.

• Barilliance (https://www.barilliance.com/) - Barilliance’s 
recommendation engine uses online interactions, but 
can also combine them with point-of-sale data from 
brick-and-mortar stores for a given customer to improve 
recommendations. It offers a configurable API that allows 
some customization with API users' business rules.

• Trouvus (http://trouvus.com/) - Trouvus provides a retail 
recommendation engine and an engine specialized for 
video-on-demand applications.

• Sigmoidal (https://sigmoidal.io/recommender-sys 
tems-recommendation- engine/) - Unlike most vendors 
who work with a stock API, Sigmoidal is a consulting 
company that develops custom recommender applica-
tions tailored to each client’s data and use cases.
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chapter 6
Open Source Projects

Open source recommendation systems are useful for put-
ting together basic systems, getting an intuition for the per-
formance of various algorithms on a particular dataset, and 
sanity checks. Depending on the maturity of the packages, 
some can be deployed in production. There are many in the 
wild; we focus on the handful that are recent, complete, and 
well documented.

6.1 Surprise
Surprise (http://surpriselib.com) is a Python scikit for 

recommendation systems built by Nicolas Hug. Out of the 
box, the package provides many popular recommendation 
algorithms (see table 6.1) as well as the MovieLens dataset 
and a dataset of anonymous ratings from Jester, an online 
joke recommender system. Custom datasets can be loaded 
from a file or from a Pandas DataFrame. Installing Surprise is 
straightforward; the only dependency is NumPy. While useful 
for smaller datasets, we ran into tractability issues for neigh-
borhood algorithms on large datasets.

6.2 LightFM
LightFM (http://lyst.github.io/lightfm/docs/) (built by 

Maciej Kula while at Lyst) is a Python package that provides 
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a hybrid recommendation model by incorporating metadata 
at both the user and the item level. Both implicit and explicit 
models (see 3.1.1 Collaborative Filtering) are included. Implic-
it models are trained through negative sampling, where items 
are randomly sampled to act as negatives (similar to the neg-
ative sampling used in the embedding models). The model 
reduces to traditional matrix factorization when no metadata 
is provided. The package has the MovieLens dataset built in, 
and external datasets can be accommodated by transforming 
them into matrix form.1 LightFM is written in Cython and can 
run on multiple cores. Installation for multicore functionality 
is trickier on macOS but can be done via Docker.

6.3 Spotlight
Spotlight (https://maciejkula.github.io/spotlight/) is a Py-

thon package built using PyTorch that enables users to build 
traditional and neural network-based recommendation sys-
tems. It was also written by Maciej Kula. Both implicit and 
explicit models are available. Similar to the LightFM package, 
implicit models are trained through negative sampling. The 
package provides the MovieLens and Goodbooks datasets.2 
It also has a module for generating synthetic sequential data 
with known properties; this type of data is useful when test-
ing deep recommendation models. External datasets can be 
accommodated by transforming them into the internal Spot-

1 Input data is a sparse matrix where rows represent users, and 

columns represent items.

2 The Goodbooks dataset contains six million ratings for ten thou-

sand of the most popular books.

Open Source Projects  87

light representation with a few lines of code. Installation is 
relatively straightforward; PyTorch is an obvious dependency.

6.4 Implicit
Implicit (http://implicit.readthedocs.io/en/latest/), built  

by Ben Frederickson, is a Python package that provides a 
collaborative filtering model for implicit datasets based on 
observations of user actions. To handle implicit data, rather 
than using negative sampling the package implements a spe-
cific matrix factorization-based model to infer ratings from, 
for example, the number of times a user fully watched a show. 
Implicit does not have built-in datasets; input data needs to 
be in a matrix form.3 Installation is straightforward. Running 
with macOS requires an OpenMP compiler.

6.5 Apple Turi Create
Apple very recently made its Turi Create engine available 

on GitHub, including a recommender (https://github.com/ap 
ple/turicreate/blob/master/userguide/recommender/intro 
duction.md). Apple did not develop this engine itself, but ac-
quired it along with Turi. Given the timing of this release, we 
were not able to test it. Installation instructions are straight-
forward, but Python 3.5+ is not yet supported.

Turi Create uses SFrames as the primary data structure for 
extracting data from CSV, JSON, and SQL formats. It supports 
both explicit and implicit feedback and provides matrix fac-
torization and neighborhood-based recommendation algo-

3 Specifically, a compressed sparse row (CSR) matrix, where rows 

represent items and columns represent users.
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rithms. The quickest way to get a recommender up and run-
ning is to let the system automatically choose a model based 
on the properties of the data. For example, if the input data 
only has user and movie pairs, a ranking model based on item 
similarity (neighborhood approach) will be chosen. One can 
also specify a model explicitly. Turi Create partially addresses 
the cold start problem for new items by supporting neighbor-
hood models for item content.

6.6 Apache Spark
Apache Spark is an open source cluster computing frame-

work. Its machine learning library (MLlib) has a matrix fac-
torization-based recommendation algorithm trained using 
an alternating least squares (ALS) method. It supports both 
explicit and implicit feedback. For neighborhood methods, 
LSH is also included in the library. Spark’s recommendation 
engine is scalable, distributed, and can be deployed easily into 
a web application.

6.7 Our Recommendations
Of these packages, Surprise is most useful for learning 

about basic recommendation systems when you have small-
er datasets (thousands of users and thousands of products) 
with explicit data. Spotlight, on the other hand, allows you to 
experiment with deep learning techniques and compare the 
results with those of traditional matrix factorization recom-
menders. In addition, Spotlight scales to larger datasets (tens 
of thousands of users and tens of thousands of products) and 
can handle both implicit and explicit data.

Open Source Projects  89

LightFM and Implicit are specialized packages. If you have 
metadata in addition to just user-product ratings, LightFM 
can be used to build a hybrid recommender where the cold 
start problem is alleviated. If you only have implicit data (for 
example, the length of time users spend on a particular show), 
Implicit allows you to build a recommendation system based 
on ratings inferred from the available data.

In terms of speed, Turi Create seems to provide the quick-
est path to a working recommendation system. Spark’s ma-
trix factorization-based recommender also provides an easy 
way to build a basic scalable and deployable system using data 
in existing clusters.
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chapter 7
Ethical Considerations

With the increasing popularity of online retailers, web-
sites, and social media platforms, the amount of physical 
and digital goods (as well as news and entertainment media 
content) available to us has increased greatly. Whereas brick-
and-mortar stores are limited by shelf space in terms of what 
physical goods they can offer, online stores, unencumbered 
by these limits, can propose a much wider variety. As of No-
vember 2017, Amazon, for example, had a total of 573,374,133 
products on sale.1

1 See https://www.scrapehero.com/how-many-products-does-ama 

zon-sell-november-2017/.

figure 7.1 The sheer amount of items available online make fil-

tering strategies like recommendation systems necessary.
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Given internet access and efficient logistics, (almost) re-
gardless of consumer location, the greater variety of available 
goods and content means niche interests can be served. But 
with greater variety comes the problem of discoverability: the 
sheer volume of distinct products makes it hard for consum-
ers to find the ones they may like or want.

Search allows consumers to find items they know exist, 
while recommendations systems introduce consumers to 
items they may not know exist: items they may like, items 
they may want to buy. For subscription platforms (e.g., Spotify, 
Netflix), recommenders enable subscribers to make easy use 
of the platform. Recommendation systems help us navigate a 
world of variety, novelty, and consumer choice.

In terms of consumption, the number of hours per day per 
user has remained constant: there are only so many products 
we can buy, songs we can listen to, movies we can watch, and 
stories we can read in a single day. Money has always been a 
limiting resource, but over the past years, attention has be-
come a newly scarce one. Recommendation systems guide 
our attention as we navigate this world of variety, novelty, and 
choice; they are convenient, and increasingly ubiquitous.

As such, recommendation systems are powerful. For ex-
ample, an informed citizenry is a crucial component of a 
well-functioning democracy, and society relies on the news 
media for information. Increasingly, recommendation sys-
tems guide the news we consume. The design and deploy-
ment of such systems requires thought to ensure that they are 
actually helpful, and not harmful.
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7.1 Filter Bubbles & Echo Chambers
Internet activist Eli Pariser coined the term "filter bubble" 

circa 2010,2 to describe the personalized ecosystem of infor-
mation delivered to a user by search and recommendation 
systems that filter content through the lens of past behavior. 
A related concept is that of the "echo chamber," where peo-
ple with similar viewpoints share and discuss information or 
ideas in a self-reinforcing manner, leading to the exclusion of 
other perspectives.

These concepts highlight a growing concern that algo-
rithms could contribute to a world in which people are ex-
posed to less diverse viewpoints over time. In 2013, the EU 

2 See https://www.penguinrandomhouse.com/books/309214/the-fil 

ter-bubble-by-eli-pariser/9780143121237/.

figure 7.2 If they are not calibrated carefully, recommendation 

systems can limit users to a filter bubble based on their past 

behavior.

User

- Different item types

User

Step 1 Step 2
User chooses a certain type

of item in one interaction
User only receives

recommendations for that
type of content
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High Level Group of Media Freedom and Pluralism noted 
that "Increasing filtering mechanisms makes it more likely 
for people to only get news on subjects they are interested 
in, and with the perspective they identify with. Such devel-
opments undoubtedly have a potentially negative impact on 
democracy."3

However, the jury is still out on the role of algorithms in 
creating filter bubbles and echo chambers. For example, in-
dividual choices about what content to consume, especially 
when it comes to news media, have always been subject to 
factors such as confirmation bias (the tendency to search 
for, interpret, favor, and recall information in a way that con-
firms one’s preexisting beliefs or hypotheses) — and a study 
conducted by Facebook in 2015 found that individual choices 
more strongly determine news media consumption than the 
Facebook news feed.4

Regardless of how filter bubbles and echo chambers are 
actually created, though, semantic recommenders may fur-
ther "seal" the bubble or chamber. Prior to semantic recom-
menders (due to the lack of a solution for the cold start prob-
lem), developers had little choice but to introduce to users 
new items that they did not yet know or predict the users 
would like. Consequently, users could encounter items not 
in accordance with past behavior, thereby increasing the di-

3 See  http://ec.europa.eu/information_society/media_task 

force/doc/pluralism/hlg/hlg_final_report.pdf.

4 See http://science.sciencemag.org/content/early/2015/05/06/

science.aaa1160. Given the researchers' affiliations, there may, of 

course, be a conflict of interest at play.
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versity in the set of items they were presented with. With se-
mantic recommenders such chance encounters are less likely 
to happen. Furthermore, since semantic recommenders can 
trace the development of user preferences over time (driven, 
in part, by current mood and opinion) and produce recom-
mendations accordingly, they can act as polarizers in times of 
heated discourse.

To combat the potentially harmful effects of personalized 
search and recommendation systems, some suggest that 
developers use "exposure diversity" as a design principle 
for these systems.5 Diversity becomes part of what the algo-
rithm optimizes for. Exposure diversity may help foster our 
collective ability to digest diverse viewpoints for civil dis-
course, for example, and even reduce confirmation bias: pref-
erence-inconsistent recommendations are known to trigger 
critical thinking patterns that can help overcome such bias.6 
We may, furthermore, consider the development of tools to 
inform readers about their news diet, providing an overview 
of news consumption behavior in aggregate, and develop rec-
ommenders expressly designed to surface articles on topics 
of interest, but with an opposing view, to help inform read-
ers about the extent of their bubble and encourage more bal-
anced consumption.

5 See http://www.tandfonline.com/doi/full/10.1080/136911

8X.2016.1271900.

6 See https://www.sciencedirect.com/science/article/pii/

S0747563212001963.
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7.2 Bias
Recommendation engines can encode biases and per-

petuate unwanted or harmful behavior. A study conducted 
in 2015 found that compared to men, women see fewer ads 
for high-paying jobs on Google.7 Another study found that 
searching for names primarily given to black babies (e.g., De-
Shawn, Darnell, and Jermaine) generated public-record ads 
suggestive of an arrest record in 81 to 86 percent of search-
es on one website, and 92 to 95 percent on another. When 
searching for names primarily given to white babies (e.g., 
Geoffrey, Jill, and Emma), the word "arrest" appeared in only 
23 to 29 percent of ads on the one site and 0 to 60 percent on 
the other.8

Furthermore, recommenders may simply work less well 
for minority groups. Since recommenders are evaluated with 
a focus on the system’s overall effectiveness, and since larger 
subgroups tend to dominate overall statistics, the satisfaction 
of dominant user groups is weighted more heavily than that 
of minority groups,9 which is a form of discrimination.

Finally, recommended items tend to get higher ratings be-
cause recommendations "anchor" user ratings — that is, us-
ers give higher ratings to an item because the item has been 
recommended to them. This dynamic of "the rich get richer" 
can prevent upstarts (like small vendors on Etsy) from grow-
ing their businesses, perpetuating the status quo.

7 See https://www.degruyter.com/view/j/popets.2015.1.issue-1/pop-

ets-2015-0007/popets-2015-0007.xml.

8 See https://arxiv.org/abs/1301.6822.

9 See http://ceur-ws.org/Vol-1905/recsys2017_poster20.pdf.
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Semantic recommenders, like behavior- or demograph-
ics-based recommenders, can encode all three types of bias-
es, while their solution to the cold start problem may in fact 
exacerbate the "rich get richer" dynamic. Unfortunately, com-
bating bias is hard. Women and men tend to wear different 
clothes, so a retailer may want to use the variable "gender" 
in clothing recommendations. But it is wrong to serve "gen-
dered" job recommendations.

Removing protected category information from data that 
powers recommenders is a start, but protected category in-
formation tends to correlate and interact with other variables 
in unexpected and unknown ways. Model introspection may 
help us understand how algorithms create recommendations 
and spot bias. But neural recommenders (like semantic rec-
ommenders) are, compared to their non-neural cousins, hard-
er to introspect. We recommend the use and development of 
tools to audit and test recommendation engines for bias, both 
during development and once deployed.10 Equipped with 
such tools, engineers should make a point of adding "bias 
tests" to their suite of unit tests, functional tests, regression 
tests, etc.

To ensure that recommenders do not serve only the major-
ity, we can downsample majority groups (or upsample minori-
ty groups) so that all groups are represented equally in the data 
used during the development of recommendation systems. In 
parallel, we need to develop evaluation methods that ensure 
that recommenders serve all groups equally well, even at the 

10 An example of such a tool is AdFisher, developed by Carnegie 

Mellon University; see http://possibility.cylab.cmu.edu/adfisher/.
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expense of their overall effectiveness. Both mitigation strat-
egies force us to define majority and minority groups, which 
is admittedly a minefield — but without such definitions, we 
lack strategies to combat biases that exist today.

Finally, to break the "rich get richer" dynamic, we can use 
algorithmic methods to estimate and subtract the effect of 
a recommendation on a user rating, as has been done by re-
searchers at Cornell University.11 Combating bias is hard, but 
there are tools developers can use to reduce bias in recom-
mendation systems.

7.3 Attacks & Gaming
Recommendation engines can be designed (or "gamed") 

for economic benefit, rather than for best serving the needs, 
wants, and interests of users. Retailers selling their wares 
online can use recommendations to anchor consumer pref-
erence and expectation,12 nudging consumers to buy more 
expensive items.

Retailers and content producers selling their wares on 
aggregator websites or through social media platforms 
(where they compete with others) can game recommend-
ers to recommend their products or content over another’s. 

"Shilling" attacks, for example, are malicious attempts to  
 
 

11 See http://papers.nips.cc/paper/6362-beyond-exchangeabili 

ty-the-chinese-voting-process.

12 See https://arizona.pure.elsevier.com/en/publications/recom 

mender-systems-consumer-preferences-and-anchoring-effects.
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change recommendations by inserting fake user profiles into  
user-item matrices.13

Recommenders based on user behavior are particular-
ly prone to shilling attacks, while semantic recommenders, 
since they make use of content (in addition to user behavior), 
are more robust. They are, however, prone to another form of 
gaming: content expressly designed to be favored by recom-
mendation engines.

In his post "Something Is Wrong on the Internet,"14 James 
Bridle provides an example of what can happen when content 

13 See http://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0130968.

14 See https://medium.com/@jamesbridle/something-is-wrong-on-

the-internet-c39c471271d2.
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figure 7.3 Recommendation systems are vulnerable to gaming 

through algorithmic content generation based on popular key-

words or topics.
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is designed for recommendation engines first and foremost, 
not people. Children’s entertainment on YouTube is lucrative: 
children enjoy watching videos of Peppa Pig nursery rhymes, 
and the unwrapping of Kinder Surprise Eggs. When a video 
ends, recommendation engines surface the next recommend-
ed video, and with autoplay turned on, it will play after just a 
brief interruption.

While some of the recommended videos are appropriate 
suggestions, some have "word salad" titles that feel like they 
are not intended for human consumption — and they aren’t: 
they are algorithmically designed to be favored by the rec-
ommender. The content of some of these videos is decidedly 

"odd" (and some are even disturbing or violent). With ever fast-
er and more inexpensive forms of content generation, from 
cheap 3D animation to fully computer-generated content, 
these videos may eventually crowd out more appropriate con-
tent and prove lucrative to their creators because of their high 
ranking by YouTube’s recommendation engine (content pro-
ducers receive a share of ad revenue).

Recommendation engines are also gamed for ideological 
reasons. Terrorist and hate groups disseminate content on-
line (including via social media and platforms like YouTube). 
They have an interest in increasing the visibility of their mes-
sage to radicalize target groups. A report by Data & Society on 
Media Manipulation and Disinformation Online, published in 
May 2017,15 outlines how internet subcultures take advantage 
of the current media ecosystem (including search and recom-

15 See https://datasociety.net/output/media-manipulation-and-dis 

info-online/.
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menders) for their benefit, with detrimental consequences to 
society (e.g., spreading misinformation and eroding trust in 
traditional news media organizations).

Gaming, fraud, and abuse are a cat-and-mouse game; they 
can never be entirely eradicated. Still, fake user profiles tend 
to be dissimilar from existing user profiles: there are metrics 
to determine the probability of a profile being real, or the re-
sult of a shilling attack, that can immunize recommenders 
against such attacks.16

To combat content-based gaming, a new phenomenon, the 
recommendation systems development community needs to 
create strategies to identify "fake content" at scale. We could, 
for example, flag content with word salad titles or block ac-
counts that publish very similar content very often (sugges-
tive of content autogeneration for gaming). To date, compa-
nies faced with the fake content challenge have struggled to 
develop such strategies, because it is a very hard problem and 
there is no silver bullet; YouTube recently hired thousands of 
(human) content moderators to weed out inappropriate con-
tent, partly in response to Bridle’s post.

One of the central challenges in this debate and effort — a 
challenge we face as a society — is the definition of what is 
(and what is not) appropriate content (and who will be the arbi-
ter). While there are no definite answers to this question, there 
are organizations and committees drafting possible solutions, 

16 See http://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0130968.
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some of them recently formed in the light of new challenges.17

7.4 What (More) Can We Do?
Recommendation engines are powerful. Development 

and deployment requires thought to ensure they are helpful, 
not harmful. Throughout this chapter, we’ve outlined strate-
gies for developers to reduce the harmful effects of filter bub-
bles and echo chambers, bias, attacks, and malicious gam-
ing — but there is more we can do.

As users of recommenders and consumers of recommenda-
tions, we can challenge ourselves to overcome confirmation 
bias and consciously adopt a more balanced "news diet"; we 
can decide to read across partisan lines. We can use incognito 
browser windows and search engines like duckduckgo.com 
that do not store personal information and do not track users. 
As we interact with content on media platforms, we can re-
port fraud and abuse to companies, to help reduce malicious 
activity on their sites and products (and contribute to public 
pressure, in case companies fail to act on this information).

Finally, we can take part in the public debate on what is 
and what isn’t appropriate content, sharing our perspectives 
on what is plainly a complex issue that can only be addressed 
through collective effort.

17 See https://www.ft.com/content/080d1dd4-d92c-11e7-a039-

c64b1c09b482.
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The Future of Recommendations

Semantic recommendation systems offer us the ability to 
produce highly influential results with greater precision than 
many of the current “do what’s been most popular” personal-
ization tools underlying many apps and search engines. The 
growth of these emerging techniques still faces several limita-
tions in the immediate future, but once these limitations are 
overcome, the tools will also lead to spectacular and nonintu-
itive new capabilities.

We want to clarify that a recommendation is only a predic-
tion (built upon past feedback), serving as a proxy for what a 
user might actually want; we (as the data scientists behind the 
recommender) hope the prediction relates to that user’s pref-
erences closely enough within a certain window of time as to 
be useful. As user interfaces improve and collect more precise 
user preference information, we expect model development 
to improve as well. Because the design of nonintrusive and 
easy-to-use interfaces can be very challenging, we expect that 
the adoption of some advanced recommendation techniques 
may hinge on users' comfort with sharing more personal re-
quests and specific preferences with the systems. For exam-
ple, it may be easier to tell even a friend (let alone an app) that 
you’re looking for a story “like Harry Potter” than to spell out 
that you want to read something featuring centaurs, dragons, 
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mass murderers, and a coming of age love story. Further, most 
people simply aren’t used to being able to ask for more from 
search and recommendation systems. Most of us take it for 
granted that website and app search suggestions are regularly 
inaccurate, to the point where we are offered hundreds (if not 
thousands) of options to scroll through on a results page. It’s 
also quite common for people to simply feel that they won’t 
know specifically what they are looking for until they see it. 
However, the payoff for us (as users) in opening up with great-
er specificity about what it is we are really looking for will be 
measured in both immense time savings and much greater 
user satisfaction.

We do see some progress being made in overcoming this 
tailored data collection challenge, as we’re seeing more (and 
better) integration of lifestyle aids in our consumer experienc-
es. For many, the debate over how invasive such technologies 
are now and how much data should be permitted to be collect-
ed on our lives is quite active, and (as noted in 7 Ethical Con-
siderations) the imbalance in personalization for the "haves" 
vs. "the have-nots" will continue to be a substantive concern. 
However, these data-collection devices are becoming more 
and more welcomed and integrated into our lives, in forms 
such as mobile phones with GPS tracking, Fitbit-like lifestyle 
trackers, and "personal assistants" like Alexa, Siri, and Corta-
na. All of these devices facilitate the gathering of data from 
an increasingly broader range of user actions, which will be 
key to the growth of more capable and more personalized 
recommenders.

Similar to the challenges facing many other emerging ma-
chine learning capabilities, such as those for video analysis in 
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fields like medical robotics, we see that the lack of topical la-
beled training data can really limit effective recommendation 
algorithm development. Even within available scored data-
sets, the information may not be as valuable as we would hope 
in developing accurate recommendation models. For exam-
ple, in preparing for this report and building the accompa-
nying prototype, we found many of the datasets we explored 
used 5-star ranking systems, but the vast majority of the user 
scores were simply 1, 4, and 5 stars. So, although technical-
ly the datasets had a large number of ratings, we estimate 
that much of the true sentiment of the users is buried in oth-
er characteristics of the works which were not measured in 
the general scale. Netflix analysts/engineers may have noted 
a similar feature, leading to their switch in spring 2017 to a 
thumbs-up/thumbs-down scoring system.

Data limitations notwithstanding, we’re looking forward 
to growth and development in the neural network space ap-
plicable to training multimodal embeddings. We expect bet-
ter understanding of embeddings will help spur the growth 
of recommendation systems and, in turn, new and exciting 
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fields like medical robotics, we see that the lack of topical la-
beled training data can really limit effective recommendation 
algorithm development. Even within available scored data-
sets, the information may not be as valuable as we would hope 
in developing accurate recommendation models. For exam-
ple, in preparing for this report and building the accompa-
nying prototype, we found many of the datasets we explored 
used 5-star ranking systems, but the vast majority of the user 
scores were simply 1, 4, and 5 stars. So, although technical-
ly the datasets had a large number of ratings, we estimate 
that much of the true sentiment of the users is buried in oth-
er characteristics of the works which were not measured in 
the general scale. Netflix analysts/engineers may have noted 
a similar feature, leading to their switch in spring 2017 to a 
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recommendation capabilities. For example, clearer under-
standings of bimodal and multimodal embeddings could 
lead to recommendations of music or other art forms based 
on a user’s book preferences (and vice versa). We may even 
see personal action recommendations, such as receiving a 
suggestion to eat before you even realize you’re a bit peckish, 
a water heater warming water in the tank in anticipation of 
you wanting to take a bath, or a coffee maker brewing a pot of 
coffee in anticipation of when friends at a dinner party may 
want a cup. A specific area we’re watching is the development 
of attention models, which we feel will support increasing in-
terpretability of neural network systems and further benefit 
understanding of embeddings — how seemingly unrelated 
objects and actions are each represented in a network.

We’re also watching the growth of video analytics capabil-
ities, and how the media industry addresses expected interest 
with tailored content generation. We know that developers 
across industries are aware of the data availability challenge 
and are working to grow larger and more complete datasets, 
such as more completely labeled videos with new tags and 
features, as well as joined datasets. This growth will help 
drive neural network advancement, which will in turn help 
boost the low signal-to-noise ratio in recommendation offer-
ings. However, we also recognize that the media industry in 
particular may shortsightedly and excessively buy in to rec-
ommending content tailored solely to user preferences (we’re 
not fans; see the 7.1 Filter Bubbles & Echo Chambers). While 
there are interesting problems in the tailored content space, 
too much emphasis may delay the advent of truly revolution-
ary (recommendations-based) capabilities, which will change 
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the ways we interact with the world and connect our ideas 
and actions.

Finally, in terms of raw processing capability, by summer 
2018 we’re expecting to see new hardware become available 
with which data scientists will be better able to train larger 
models designed to uncover semantic relevancy. In particu-
lar, the increasing integration of ASICs (application-specific 
integrated circuits) into chipsets, as with the NVIDIA Volta, 
is providing a boost to machine learning processing capabili-
ties. The growing competition in this space between NVIDIA, 
Intel (currently developing its Nervana chipset tailored for 
ML), and other hybrid and ML-focused processing units will 
only serve to deliver greater capability at better prices going 
forward.

8.1 Recommendation Sci-Fi: Customers Who  
Haven’t Read Kafka Also Like

A short story written by Kent Szlauderbach,1 inspired by Franz 
Kafka’s parable "An Imperial Message".2

Given that Kafka’s famous parable, “An Imperial Message,” 
never happened, neither would this parable, as our model 
suggests, though they are very similar. Say the most power-
ful computer in the nation sends a message, in a fatal error, 
containing the story’s true meaning to you, a modest user, a 
forensic trace represented by mere underscores bookended 
by two periods, a crushed smiley at the bottom of the remot-
est silo in the most isolated piece of crumbling land that can 

1 See http://kentszlauderbach.com.

2 See http://home.nwciowa.edu/firth/kafka.htm.
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still be accessed from the office that houses the tower, which 
is gleaming and made all of windows and plants, as you can 
see. To its subjects the office suits the computer’s good policy, 
clear thinking, and calm understanding—unlike yours, the 
message’s subject. We all feel this way now and then. Better 
for you, the subject, that the computer’s message, its produc-
tion of meaning after reading the famous parable, which the 
subject has never read, according to the model, urgently needs 
to be delivered to this subject alone, which is so rare as to be 
impossible, we modeled, we thought, given that the computer 
was not designed to send messages so… personal, so clearly 
made out to a reader. What it says is not our business; the suc-
cessful delivery of this message is: so the computer called a 
little messenger over, said good boy, because you can imag-
ine a black dog better than a black box, and began to whis-
per the message that you’ve been wanting to hear, something 
so urgent, perhaps for the perfect product—no, service—the 
one that may have been your very idea, the one you need now 
more than ever. What could it say? The computer, in its tow-

Customers Who 
Haven’t Read 

Kafka Also Like
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ering form and brilliant interface, standing at the center of 
its office made of windows and plants, made a command to 
the messenger, which had never happened before and should 
never have happened, we thought, we modeled, but still, the 
computer set delivery to the subject who shall be delivered of 
the need to hear that message, that message that the comput-
er had delivered to a messenger, who we can only say is a black 
box, a negative, nothing we can say, that is neither black nor a 
box. The dog carried its black box in its mouth along the path 
below but still in range of sight of the office made of windows 
and plants, then down through an office park, where in its vis-
ible spectrum it could see the thousands of others like him 
itself who had come to the office of windows and plants to 
witness the fatal error of the computer, dogs whose messages 
were totally unlike yours, mutually unintelligible as they were, 
but had gathered there anyway to witness the message as if it 
were the final move in a game, this final stroke of the task, but 
instead demanded that this message go out to a single subject 
in the remotest place in the country’s network, a black box 
through a black box, first through the innermost room of an 
office park that was neither black nor a box, to the inner city 
whose office park buildings were themselves black boxes atop 
black boxes, but again, were neither black nor boxes, but blue 
and reflective, where our messenger looked—yes this dog 
vessel could look and learn itself, as we modeled, we thought. 
Even if these buildings, as they appear to the messenger, are 
not black nor boxes, they give the messenger, looking at it-
self, the feeling of a black box, of unknowing, since he it has 
no idea what is contained in this message, or how he’ll it will 
ever get to you and if he it ever will, but yet he it presses on as 



108  The Future of Recommendations

still be accessed from the office that houses the tower, which 
is gleaming and made all of windows and plants, as you can 
see. To its subjects the office suits the computer’s good policy, 
clear thinking, and calm understanding—unlike yours, the 
message’s subject. We all feel this way now and then. Better 
for you, the subject, that the computer’s message, its produc-
tion of meaning after reading the famous parable, which the 
subject has never read, according to the model, urgently needs 
to be delivered to this subject alone, which is so rare as to be 
impossible, we modeled, we thought, given that the computer 
was not designed to send messages so… personal, so clearly 
made out to a reader. What it says is not our business; the suc-
cessful delivery of this message is: so the computer called a 
little messenger over, said good boy, because you can imag-
ine a black dog better than a black box, and began to whis-
per the message that you’ve been wanting to hear, something 
so urgent, perhaps for the perfect product—no, service—the 
one that may have been your very idea, the one you need now 
more than ever. What could it say? The computer, in its tow-

Customers Who 
Haven’t Read 

Kafka Also Like

The Future of Recommendations  109

ering form and brilliant interface, standing at the center of 
its office made of windows and plants, made a command to 
the messenger, which had never happened before and should 
never have happened, we thought, we modeled, but still, the 
computer set delivery to the subject who shall be delivered of 
the need to hear that message, that message that the comput-
er had delivered to a messenger, who we can only say is a black 
box, a negative, nothing we can say, that is neither black nor a 
box. The dog carried its black box in its mouth along the path 
below but still in range of sight of the office made of windows 
and plants, then down through an office park, where in its vis-
ible spectrum it could see the thousands of others like him 
itself who had come to the office of windows and plants to 
witness the fatal error of the computer, dogs whose messages 
were totally unlike yours, mutually unintelligible as they were, 
but had gathered there anyway to witness the message as if it 
were the final move in a game, this final stroke of the task, but 
instead demanded that this message go out to a single subject 
in the remotest place in the country’s network, a black box 
through a black box, first through the innermost room of an 
office park that was neither black nor a box, to the inner city 
whose office park buildings were themselves black boxes atop 
black boxes, but again, were neither black nor boxes, but blue 
and reflective, where our messenger looked—yes this dog 
vessel could look and learn itself, as we modeled, we thought. 
Even if these buildings, as they appear to the messenger, are 
not black nor boxes, they give the messenger, looking at it-
self, the feeling of a black box, of unknowing, since he it has 
no idea what is contained in this message, or how he’ll it will 
ever get to you and if he it ever will, but yet he it presses on as 



110  The Future of Recommendations

the computer commanded, for even if the messenger reached 
the edge of the city, it would still have to make it through the 
suburb offices of black boxes, buildings that had grown so tall 
and wide as to become indistinguishable from the inner city. 
Still not lost, it would take even more power and time to de-
liver the message to its recipient. We have worked very hard 
to understand the impossibility of this. We’ve thought about 
how one could be receiving these kinds of messages before, 
but only in their lack of possibility. Pure imagination. This 
would never happen. And you think, waiting for the messen-
ger who had been given the rarest possible message ever cre-
ated: What would it say? What is the meaning of the famous 
parable? You’ve been selected to read this because you are the 
last of a group of people who speak this language, perhaps, or 
only, the last who has not read this parable. This language is 
English: the subject’s recommended language, not the orig-
inal. Do you know it? Click yes or no, you think, we thought, 
when it would arrive, when you would hear the ring on your 
phone. Thank you. That’s what it might sound like, a sound 
you’d never imagine you would hear. We’re not in the busi-
ness of recommending content, it might say. We recommend 
memories, that of the computer sending you such a perfect 
message on your birthday. Is that all it says? Was that the day? 
But still the message is far away, still walking through the of-
fice park, even as you wait and look vaguely out the window 
toward the office made of windows and plants.
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Conclusion

Robust and meaningful recommendation algorithms are 
critical to a thriving internet economy. Current approaches 
are fraught with problems, from the lack of motivation in 
evaluating their success to the cold start problem and the 
algorithm’s general ignorance of content. Solutions to these 
problems are beginning to make their way into common prac-
tice through the use of algorithms like multi-modal models. 
This signals a fundamental shift in the prevalence of semantic 
recommendation systems and the fields that are able to take 
advantage of them.

Our prototype, Deep Bargain Book Store, shows the pos-
sibilities of these algorithms, as well as their current failings. 
We are able to sidestep the cold start problem and form rec-
ommendations based on the actual content that is being rec-
ommended. Furthermore, we are able to recommend items 
based on an actual user preference as opposed to an item’s 
general popularity. However, we are still limited to only the 
summary of a book, as opposed to the actual book text, and 
the algorithms are still not quite robust enough for out-of-
the-box usage. There are still quite a few problems to solve. 
But that said, we believe this exciting field is one that should 
be kept on all researchers' radar; we predict that in the com-
ing years new work will accelerate these methods into more 
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general use across multiple sectors.
There is still societal tension regarding where semantic 

recommendation systems should be implemented and what 
their tasks should be. Important questions about echo cham-
bers, filter bubbles and algorithmically tailored content still 
need exploring for us to fully understand the ramifications of 
any system we build. It is particularly important for recom-
mendation systems to be motivated by these considerations, 
since they are built to predict human interactions!

Over the coming years, we will see new datasets being re-
leased that will help fuel more research into recommendation 
systems. We predict this will cause a rise in the applicability, 
stability, and robustness of mutli-modal models. With these 
advances will come recommendation systems that can be 
used in new ways, without sacrificing their ability to create 
meaningful recommendations.
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