

Cloudera Fast Forward Labs

Semantic
Recommendations

Cloudera Fast Forward Labs

Semantic
Recommendations

Copyright © 2018 by Cloudera Fast Forward Labs

http://www.fastforwardlabs.com

New York, NY

To the future—

Copyright © 2018 by Cloudera Fast Forward Labs

http://www.fastforwardlabs.com

New York, NY

To the future—

Contents

1 Introduction 7

2 What Are Recommendations? 11
2.1 The Role of Representation 14
2.2 Why Recommendations Are Hard 19
2.3 What Are the Solutions? 26

3 How Do Recommendations Work? 29
3.1 History of Recommendation Systems 30
3.2 What This All Means 54

4 Prototype 57
4.1 Data 57
4.2 Model 59
4.3 Product: Deep Bargain Book Shop 68
4.4 General Engineering Considerations 76

5 Recommendation Vendors 79
5.1 General-Purpose APIs 79
5.2 Smaller Vendors 82

6 Open Source Projects 85
6.1 Surprise 85
6.2 LightFM 85
6.3 Spotlight 86
6.4 Implicit 87
6.5 Apple Turi Create 87
6.6 Apache Spark 88
6.7 Our Recommendations 88

7 Ethical Considerations 91
7.1 Filter Bubbles & Echo Chambers 93
7.2 Bias 95
7.3 Attacks & Gaming 98
7.4 What (More) Can We Do? 101

8 The Future of Recommendations 103
8.1 Recommendation Sci-Fi: Customers Who
Haven’t Read Kafka Also Like 107

9 Conclusion 111

Contents

1 Introduction 7

2 What Are Recommendations? 11
2.1 The Role of Representation 14
2.2 Why Recommendations Are Hard 19
2.3 What Are the Solutions? 26

3 How Do Recommendations Work? 29
3.1 History of Recommendation Systems 30
3.2 What This All Means 54

4 Prototype 57
4.1 Data 57
4.2 Model 59
4.3 Product: Deep Bargain Book Shop 68
4.4 General Engineering Considerations 76

5 Recommendation Vendors 79
5.1 General-Purpose APIs 79
5.2 Smaller Vendors 82

6 Open Source Projects 85
6.1 Surprise 85
6.2 LightFM 85
6.3 Spotlight 86
6.4 Implicit 87
6.5 Apple Turi Create 87
6.6 Apache Spark 88
6.7 Our Recommendations 88

7 Ethical Considerations 91
7.1 Filter Bubbles & Echo Chambers 93
7.2 Bias 95
7.3 Attacks & Gaming 98
7.4 What (More) Can We Do? 101

8 The Future of Recommendations 103
8.1 Recommendation Sci-Fi: Customers Who
Haven’t Read Kafka Also Like 107

9 Conclusion 111

Introduction 7

chapter 1
Introduction

The internet has given us an avalanche of options for what
to read, watch and buy. Because of this, recommendation al-
gorithms, which find items that will interest a particular per-
son, are more important than ever.

But until recently, recommendation algorithms suffered
from a critical shortcoming: they didn’t understand the con-
tent of the items they are recommending or the underlying
preferences of their users. Using them was like getting a book
recommendation from someone who hadn’t read the book
and didn’t know you well. This limitation was down to naive
algorithms that made unsubstantiated assumptions with in-
sufficient datasets, and a general lack of tools and hardware to
unlock meaning within raw content. However, thanks to re-
cent algorithmic advances in the field of embeddings, namely
multi-modal models, we have begun to uncover how the se-
mantic content of items relates to a user’s preference.

This new capability will allow us to do several things. First,
it will improve current recommendation systems by solving
the cold start problem — where existing algorithms simply
cannot create recommendations for items or users they hav-
en’t seen before. It will also improve recommendations by al-
lowing the algorithms to use the most important information
about each item: the item itself. Algorithms that understand

Introduction 7

chapter 1
Introduction

The internet has given us an avalanche of options for what
to read, watch and buy. Because of this, recommendation al-
gorithms, which find items that will interest a particular per-
son, are more important than ever.

But until recently, recommendation algorithms suffered
from a critical shortcoming: they didn’t understand the con-
tent of the items they are recommending or the underlying
preferences of their users. Using them was like getting a book
recommendation from someone who hadn’t read the book
and didn’t know you well. This limitation was down to naive
algorithms that made unsubstantiated assumptions with in-
sufficient datasets, and a general lack of tools and hardware to
unlock meaning within raw content. However, thanks to re-
cent algorithmic advances in the field of embeddings, namely
multi-modal models, we have begun to uncover how the se-
mantic content of items relates to a user’s preference.

This new capability will allow us to do several things. First,
it will improve current recommendation systems by solving
the cold start problem — where existing algorithms simply
cannot create recommendations for items or users they hav-
en’t seen before. It will also improve recommendations by al-
lowing the algorithms to use the most important information
about each item: the item itself. Algorithms that understand

8 Introduction

content — and the preferences of a user in relation to that
content — can make better recommendations. Using these
recommendation algorithms is like getting a book recom-
mendation from friend who knows you well and has actually
read the book!

Another exciting aspect of these new algorithms is the
ability to apply recommendation algorithms in contexts oth-
er than e-commerce. Better recommendations predict the

Model

Recommendations

The model is a

traditional approach

I’m not really a big reader
myself. I just look at what
everybody else is reading.

Model

The model is a

content-aware approach

Recommendations

Yes, I’ve read those books.
I think you will enjoy these
selections that I read and
found similar.

figure 1.1 We can now build recommendation systems that are

content-aware, addressing a weakness of traditional approaches.

Introduction 9

outcome of an interaction, so why restrict their use to e-com-
merce? Multi-modal models could become important in many
situations: pairing users to customer service representatives,
recommending which emails you should respond to first (and
why), or even recommending travel routes that are not simply
the most efficient, but rather the route you would most prefer.

In this report we discuss this new field, from the history
of how it has evolved to where it currently is and what work
is being done to make the algorithms more widely applicable.
While these methods are still in their infancy, they show in-
credible promise.

8 Introduction

content — and the preferences of a user in relation to that
content — can make better recommendations. Using these
recommendation algorithms is like getting a book recom-
mendation from friend who knows you well and has actually
read the book!

Another exciting aspect of these new algorithms is the
ability to apply recommendation algorithms in contexts oth-
er than e-commerce. Better recommendations predict the

Model

Recommendations

The model is a

traditional approach

I’m not really a big reader
myself. I just look at what
everybody else is reading.

Model

The model is a

content-aware approach

Recommendations

Yes, I’ve read those books.
I think you will enjoy these
selections that I read and
found similar.

figure 1.1 We can now build recommendation systems that are

content-aware, addressing a weakness of traditional approaches.

Introduction 9

outcome of an interaction, so why restrict their use to e-com-
merce? Multi-modal models could become important in many
situations: pairing users to customer service representatives,
recommending which emails you should respond to first (and
why), or even recommending travel routes that are not simply
the most efficient, but rather the route you would most prefer.

In this report we discuss this new field, from the history
of how it has evolved to where it currently is and what work
is being done to make the algorithms more widely applicable.
While these methods are still in their infancy, they show in-
credible promise.

10 Introduction What Are Recommendations? 11

chapter 2
What Are Recommendations?

Recommendation algorithms may seem to inhabit only
content platforms and e-commerce websites, but their appli-
cation is actually quite broad. Whenever we have two types of
things that need to be paired together — moviegoers and mov-
ies, customers and customer support representatives — we
have a recommendation problem. The task is, given historical
information about how these pairings have gone in the past,
to predict new pairings for the future.

1. Harry Potter and the
Chamber of Secrets
- because you liked
Sorcerer’s Stone

2. Lord of the Rings:
Return of the King
- because you liked
Fellowship of the Ring

3. Game of Thrones
- because you liked
Fellowship of the Ring

Movie and TV
Recommendations

Sales Representative
Recommendations

1. Arlene Lamb
- because they have
expertise in your
question area

2. Ethel Clarke
- because they respond
quickly

3. Hector Maldonado
- because they respond
relatively quickly

figure 2.1 Recommendation systems have many uses beyond

recommending products.

10 Introduction What Are Recommendations? 11

chapter 2
What Are Recommendations?

Recommendation algorithms may seem to inhabit only
content platforms and e-commerce websites, but their appli-
cation is actually quite broad. Whenever we have two types of
things that need to be paired together — moviegoers and mov-
ies, customers and customer support representatives — we
have a recommendation problem. The task is, given historical
information about how these pairings have gone in the past,
to predict new pairings for the future.

1. Harry Potter and the
Chamber of Secrets
- because you liked
Sorcerer’s Stone

2. Lord of the Rings:
Return of the King
- because you liked
Fellowship of the Ring

3. Game of Thrones
- because you liked
Fellowship of the Ring

Movie and TV
Recommendations

Sales Representative
Recommendations

1. Arlene Lamb
- because they have
expertise in your
question area

2. Ethel Clarke
- because they respond
quickly

3. Hector Maldonado
- because they respond
relatively quickly

figure 2.1 Recommendation systems have many uses beyond

recommending products.

12 What Are Recommendations?

For example, we can easily imagine a system that predicts
the best customer sales representative to help a person based
on the current question as well as past interactions. Or we
could choose to make a system that predicts the outcome of
the interaction between X and Y. Because of the symmetry of
the system, it could also be used to recommend X given Y or
Y given X.

The massive scope of applicability is why recommenda-
tion problems constantly show up in different fields, and also
why they are so hard to solve (as we’ll discuss in 2.2.1 Complex-
ity of the Problem). It is because of their complexity that in
most places where recommendation algorithms would make
sense, heuristics are used instead. For example, an online
video game will usually group users together based on expe-
rience. What if instead the grouping also took into consider-
ation play style and social dynamics? Both systems would be
recommending users to users for matching in a game;

User

Item Item

User Item

Item

User

User

User

User

Item

Factor

Factor

Item

Item

Item

Collaborative filtering Matrix factorization

figure 2.2 Collaborative filtering and matrix factorization make

use of past interactions to make recommendations.

What Are Recommendations? 13

however, the former ignores all but the simplest information.
On the other hand, extracting the relevant information to
make the more informed decision is incredibly difficult; we
don’t have information regarding most of the possible pair-
ings, and we can’t know while building the system whether
user A and B will actually play well together.

There have been many attempts to try to uncover some of
this underlying information in the data. Collaborative filter-
ing and matrix factorization are two methods that have gen-
erally been the frontrunners for solving these problems by us-
ing previous interactions to try and understand how objects
interact.

Deep learning has also recently come into the recommen-
dations game and shifted things quite a lot. The main benefit
from deep learning (as we’ll see in 3.1.4 Neural Network Ap-
proaches) is that we can use more than just interaction data,
and start learning from the actual raw data describing the

Embedding

Item

Item

Item

User

figure 2.3 Embeddings can use text or image data from an item

to group them for recommendations.

12 What Are Recommendations?

For example, we can easily imagine a system that predicts
the best customer sales representative to help a person based
on the current question as well as past interactions. Or we
could choose to make a system that predicts the outcome of
the interaction between X and Y. Because of the symmetry of
the system, it could also be used to recommend X given Y or
Y given X.

The massive scope of applicability is why recommenda-
tion problems constantly show up in different fields, and also
why they are so hard to solve (as we’ll discuss in 2.2.1 Complex-
ity of the Problem). It is because of their complexity that in
most places where recommendation algorithms would make
sense, heuristics are used instead. For example, an online
video game will usually group users together based on expe-
rience. What if instead the grouping also took into consider-
ation play style and social dynamics? Both systems would be
recommending users to users for matching in a game;

User

Item Item

User Item

Item

User

User

User

User

Item

Factor

Factor

Item

Item

Item

Collaborative filtering Matrix factorization

figure 2.2 Collaborative filtering and matrix factorization make

use of past interactions to make recommendations.

What Are Recommendations? 13

however, the former ignores all but the simplest information.
On the other hand, extracting the relevant information to
make the more informed decision is incredibly difficult; we
don’t have information regarding most of the possible pair-
ings, and we can’t know while building the system whether
user A and B will actually play well together.

There have been many attempts to try to uncover some of
this underlying information in the data. Collaborative filter-
ing and matrix factorization are two methods that have gen-
erally been the frontrunners for solving these problems by us-
ing previous interactions to try and understand how objects
interact.

Deep learning has also recently come into the recommen-
dations game and shifted things quite a lot. The main benefit
from deep learning (as we’ll see in 3.1.4 Neural Network Ap-
proaches) is that we can use more than just interaction data,
and start learning from the actual raw data describing the

Embedding

Item

Item

Item

User

figure 2.3 Embeddings can use text or image data from an item

to group them for recommendations.

14 What Are Recommendations?

objects we are recommending. Because of this, the models
can more easily uncover the semantic information that con-
tributes to why the interactions go well or poorly. This is done
using a new and promising method called multimodal em-
bedding (MME).

We discussed embeddings in "Summarization" (FF04),1
where we examined using models such as word2vec2 and
skip-thoughts as a way to turn language into a numeri-
cal representation that a computer can understand. Unlike
classic representations (for example, bag of words), this rep-
resentation distills an understanding of the text that can be
used to do complex and insightful calculations — these mod-
els are powerful enough to solve analogies and summarize
documents!

More importantly, multi-modal systems learn funda-
mental characteristics about the items or users and create a
model that understands how these characteristics (which can
come from intrinsic data, such as an image or description of
an item) relate to each other. By having our recommenda-
tion system extract semantic meaning from that raw data we
can form recommendations for items and users we’ve never
seen before, avoiding the so-called "cold start problem" that
plagues other methods.

While this extension to the field is still in its infancy, more
work is being done constantly to expand the utility of deep
learning in recommendations. We’ll explore some of the
shortcomings of the current approaches in 4.2.3 Failures, but

1 Available at http://fastforwardlabs.com/research/FF04.

2 See http://mubaris.com/2017/12/14/word2vec/.

What Are Recommendations? 15

this field is ramping up and soon will open up the possibility
to solve most of the problems that are recommendation prob-
lems as recommendation problems.

2.1 The Role of Representation
The term "representation" will come up a lot in this report,

and it is important enough that we should spend some time
discussing what it means. All algorithms operating on re-
al-world objects need to come up with some way of represent-
ing those objects in a quantitative way. One way of represent-
ing categorical data, or data that can be divided into groups,
is with a one-hot vector. That is to say, you have a long list of
all the possible values a sample can be represented by, and for
each individual sample, you put a 1 for each value that’s pres-
ent and a 0 for all the others. For example, a bookseller who
wanted to encode the topics of the books in their inventory
could use a one-hot vector for the topics in Harry Potter and
the Sorcerer’s Stone that looked like figure 2.4.

This can be done for all sorts of fields that may be pres-
ent. So, we could encode a book title by having a list of all the
possible words that could be in the title, and putting a 1 next
to the words that exist in the title of the book we’re encoding

Sci-fiDrama Fantasy RomanceMysteryComedy

0 0 1 0 0 0

figure 2.4 An example one-hot vector for Harry Potter and the

Sorcerer’s Stone.

14 What Are Recommendations?

objects we are recommending. Because of this, the models
can more easily uncover the semantic information that con-
tributes to why the interactions go well or poorly. This is done
using a new and promising method called multimodal em-
bedding (MME).

We discussed embeddings in "Summarization" (FF04),1
where we examined using models such as word2vec2 and
skip-thoughts as a way to turn language into a numeri-
cal representation that a computer can understand. Unlike
classic representations (for example, bag of words), this rep-
resentation distills an understanding of the text that can be
used to do complex and insightful calculations — these mod-
els are powerful enough to solve analogies and summarize
documents!

More importantly, multi-modal systems learn funda-
mental characteristics about the items or users and create a
model that understands how these characteristics (which can
come from intrinsic data, such as an image or description of
an item) relate to each other. By having our recommenda-
tion system extract semantic meaning from that raw data we
can form recommendations for items and users we’ve never
seen before, avoiding the so-called "cold start problem" that
plagues other methods.

While this extension to the field is still in its infancy, more
work is being done constantly to expand the utility of deep
learning in recommendations. We’ll explore some of the
shortcomings of the current approaches in 4.2.3 Failures, but

1 Available at http://fastforwardlabs.com/research/FF04.

2 See http://mubaris.com/2017/12/14/word2vec/.

What Are Recommendations? 15

this field is ramping up and soon will open up the possibility
to solve most of the problems that are recommendation prob-
lems as recommendation problems.

2.1 The Role of Representation
The term "representation" will come up a lot in this report,

and it is important enough that we should spend some time
discussing what it means. All algorithms operating on re-
al-world objects need to come up with some way of represent-
ing those objects in a quantitative way. One way of represent-
ing categorical data, or data that can be divided into groups,
is with a one-hot vector. That is to say, you have a long list of
all the possible values a sample can be represented by, and for
each individual sample, you put a 1 for each value that’s pres-
ent and a 0 for all the others. For example, a bookseller who
wanted to encode the topics of the books in their inventory
could use a one-hot vector for the topics in Harry Potter and
the Sorcerer’s Stone that looked like figure 2.4.

This can be done for all sorts of fields that may be pres-
ent. So, we could encode a book title by having a list of all the
possible words that could be in the title, and putting a 1 next
to the words that exist in the title of the book we’re encoding

Sci-fiDrama Fantasy RomanceMysteryComedy

0 0 1 0 0 0

figure 2.4 An example one-hot vector for Harry Potter and the

Sorcerer’s Stone.

16 What Are Recommendations?

(this is the aforementioned "bag of words" approach). Similar-
ly, for interactions, we could have a list of all our users, and for
a given book we could put a 1 next to the users who have inter-
acted with that book and a 0 next to the users who have not.3

The major problem with these methods, however, is that
they don’t represent any meaningful semantic information
about the content that we can use for comparison. For exam-
ple, consider the bag of words representations for The Buffalo
Book: The Full Saga of the American Animal and High Hopes: The
Rise and Decline of Buffalo, New York. Ignoring stopwords like

"of" and "the," they are linked by the word "Buffalo." On the
other hand, those titles share no words in common with that

3 If we accumulate this vector for all books we create an adjacency

matrix, which will be discussed in 3.1.1 Collaborative Filtering.

figure 2.5 Simply checking for the presence of common words

ignores the context those words are used in.

High Hopes:
The Rise and
Decline of
Buffalo,
New York

Represented as similar
because they share

the keyword Buffalo

Not represented as
similar because they
don’t share keywords

The Buffalo
Book: The Full
Saga of the
American
Animal

Of Bison
and
Man

What Are Recommendations? 17

of a third book, Of Bison and Man. As humans, we can see the
relationships between the books and understand that The Buf-
falo Book and Of Bison and Man are related, while High Hopes is
about a completely different topic — but using this represen-
tation, a computer cannot.

Throughout this report, we’ll talk about three main ways
of picking representations for recommendations that address
this issue: collaborative filtering, matrix factorization, and
multimodal embeddings. We will dive into the full technical
details in 3.1 History of Recommendation Systems, but think-
ing about the various types of representations used in the al-
gorithms is a good way to distinguish and understand them.

In collaborative filtering (see figure 2.6), we ignore all the
problems with having rich representations of objects in our
recommendation system and simply focus on the user-item
interactions, hoping that the interactions themselves contain

User Items liked
by user

Other users
who liked items

Recommended
items

Step 1 Step 2 Step 3 Step 4

figure 2.6 Collaborative filtering finds recommendations using

common likes between users.

16 What Are Recommendations?

(this is the aforementioned "bag of words" approach). Similar-
ly, for interactions, we could have a list of all our users, and for
a given book we could put a 1 next to the users who have inter-
acted with that book and a 0 next to the users who have not.3

The major problem with these methods, however, is that
they don’t represent any meaningful semantic information
about the content that we can use for comparison. For exam-
ple, consider the bag of words representations for The Buffalo
Book: The Full Saga of the American Animal and High Hopes: The
Rise and Decline of Buffalo, New York. Ignoring stopwords like

"of" and "the," they are linked by the word "Buffalo." On the
other hand, those titles share no words in common with that

3 If we accumulate this vector for all books we create an adjacency

matrix, which will be discussed in 3.1.1 Collaborative Filtering.

figure 2.5 Simply checking for the presence of common words

ignores the context those words are used in.

High Hopes:
The Rise and
Decline of
Buffalo,
New York

Represented as similar
because they share

the keyword Buffalo

Not represented as
similar because they
don’t share keywords

The Buffalo
Book: The Full
Saga of the
American
Animal

Of Bison
and
Man

What Are Recommendations? 17

of a third book, Of Bison and Man. As humans, we can see the
relationships between the books and understand that The Buf-
falo Book and Of Bison and Man are related, while High Hopes is
about a completely different topic — but using this represen-
tation, a computer cannot.

Throughout this report, we’ll talk about three main ways
of picking representations for recommendations that address
this issue: collaborative filtering, matrix factorization, and
multimodal embeddings. We will dive into the full technical
details in 3.1 History of Recommendation Systems, but think-
ing about the various types of representations used in the al-
gorithms is a good way to distinguish and understand them.

In collaborative filtering (see figure 2.6), we ignore all the
problems with having rich representations of objects in our
recommendation system and simply focus on the user-item
interactions, hoping that the interactions themselves contain

User Items liked
by user

Other users
who liked items

Recommended
items

Step 1 Step 2 Step 3 Step 4

figure 2.6 Collaborative filtering finds recommendations using

common likes between users.

18 What Are Recommendations?

meaningful information. That is to say, some people are just
very into buffalo, and thus their interactions will mainly be
with books on that topic… a feature that will propagate into
our recommendation system (even if we don’t know what a
buffalo is!).

In matrix factorization, described in 3.1.2 Matrix Factor-
ization, we take the interaction data or the metadata and try
to distill it into a smaller, more compact form (see figure 2.7).
So, the bag-of-words representation for a book title, which
could consider tens of thousands of words, would be distilled
down to 10 or so values (called factors), which would encode
higher-level features. This can be thought of as a type of top-
ic extraction, in the sense that sets of features (like the pres-
ence of the word "buffalo" or "bison") contribute to one factor,
while the presence of other sets of features (like the words

"New York") will contribute to another factor. However, matrix

Recommended
items

FactorsUser
Step 1 Step 2 Step 3

figure 2.7 Matrix factorization abstracts factors out of the items

and uses those factors to make recommendations.

What Are Recommendations? 19

factorization still starts with one-hot representations before
creating a new one, and thus carries with it many of the asso-
ciated problems.

Embeddings, on the other hand, never attempt to look at
the bag-of-words representation and instead look at the raw
text (figure 2.8). In doing so, they are able to learn from word
order and from word context. In the end, this gives us a rep-
resentation where titles about buffalo, regardless of the exact
terminology being used, will be deemed similar to each other.
Moreover, the structure that the embedding learns contains
within it a general understanding of how all the words relate
to each other. For example, with word2vec it is possible to
add and subtract words such that, for example, vec("USA") -
vec("Washington DC") + vec("France") is close to vec("Paris").
This sort of deep understanding about the content of the data

User

For each item:

Item Item text

Items
liked

Text of
items liked

Embedding space

Nearest items are
recommended items

figure 2.8 Embeddings use raw text to place items and users in

an embedding space.

18 What Are Recommendations?

meaningful information. That is to say, some people are just
very into buffalo, and thus their interactions will mainly be
with books on that topic… a feature that will propagate into
our recommendation system (even if we don’t know what a
buffalo is!).

In matrix factorization, described in 3.1.2 Matrix Factor-
ization, we take the interaction data or the metadata and try
to distill it into a smaller, more compact form (see figure 2.7).
So, the bag-of-words representation for a book title, which
could consider tens of thousands of words, would be distilled
down to 10 or so values (called factors), which would encode
higher-level features. This can be thought of as a type of top-
ic extraction, in the sense that sets of features (like the pres-
ence of the word "buffalo" or "bison") contribute to one factor,
while the presence of other sets of features (like the words

"New York") will contribute to another factor. However, matrix

Recommended
items

FactorsUser
Step 1 Step 2 Step 3

figure 2.7 Matrix factorization abstracts factors out of the items

and uses those factors to make recommendations.

What Are Recommendations? 19

factorization still starts with one-hot representations before
creating a new one, and thus carries with it many of the asso-
ciated problems.

Embeddings, on the other hand, never attempt to look at
the bag-of-words representation and instead look at the raw
text (figure 2.8). In doing so, they are able to learn from word
order and from word context. In the end, this gives us a rep-
resentation where titles about buffalo, regardless of the exact
terminology being used, will be deemed similar to each other.
Moreover, the structure that the embedding learns contains
within it a general understanding of how all the words relate
to each other. For example, with word2vec it is possible to
add and subtract words such that, for example, vec("USA") -
vec("Washington DC") + vec("France") is close to vec("Paris").
This sort of deep understanding about the content of the data

User

For each item:

Item Item text

Items
liked

Text of
items liked

Embedding space

Nearest items are
recommended items

figure 2.8 Embeddings use raw text to place items and users in

an embedding space.

20 What Are Recommendations?

being fed into the system is unparalleled, and lets us use in-
formation that is hidden in text — such as topic, tone, style,
and content — in our algorithms.

For more information about the importance of represen-
tation and how they are created in the context of language
models, please read section 4.2, "Language Models with RNNs"
from FF04: Summarization.

2.2 Why Recommendations Are Hard

2.2.1 Complexity of the Problem
Like A/B testing and reinforcement learning, recommen-

dations are part of a class of problems called Markov decision
processes (MDPs). MDPs are problems where there is a finite
state describing the world and a finite number of actions that
can be taken, and each action has an unknown reward asso-
ciated with it. Returning to the initial e-commerce example,
the state would be a user’s history on the site and the inter-
action history for all the items in the online catalogue. The
action would be a choice of which item to show to the user,
and the reward would be whether the user purchases the
item. Importantly, the effects of the action and the final user
interaction go on to affect the state of the system and change
future actions. This way of thinking about recommendations
is a useful way to account for both the generality of these sys-
tems (beyond just e-commerce) and complications in building
a robust system.

As a point of comparison, let’s look at a solution to an
MDP that has gained popularity — playing Atari with rein-

What Are Recommendations? 21

forcement learning.4 A good way to do this is by looking at
the number of parameters involved in defining the problem;
it can serve as a proxy for how complex our solution must be.
An Atari screen has a resolution of 160x192 pixels and a max-
imum of 128 colors. This corresponds to a state that can be
represented by 3,932,160 numbers. The action state can be en-
coded by three numbers, two for the left/right and up/down
position of the joystick and one for the button. Finally, the re-
ward is simply how much a user’s score has gone up.

In contrast, the Netflix recommendations dataset5 con-
tains 17,770 movies, rated from 1 to 5 by 480,189 users. This
creates a state representable by 42,664,792,650 numbers (and
this is if we ignore the order in which a user watches movies!).
The number of actions we can take is equal to the number of
items we have multiplied by the number of recommendations

4 See https://arxiv.org/abs/1312.5602.

5 See https://www.kaggle.com/netflix-inc/netflix-prize-data.

Action:
item
shown
to user

State:
user and
item
interaction
history

Purchased: reward +5

Not purchased: reward -1

figure 2.9 A recommendation system modeled as a Markov

decision process.

20 What Are Recommendations?

being fed into the system is unparalleled, and lets us use in-
formation that is hidden in text — such as topic, tone, style,
and content — in our algorithms.

For more information about the importance of represen-
tation and how they are created in the context of language
models, please read section 4.2, "Language Models with RNNs"
from FF04: Summarization.

2.2 Why Recommendations Are Hard

2.2.1 Complexity of the Problem
Like A/B testing and reinforcement learning, recommen-

dations are part of a class of problems called Markov decision
processes (MDPs). MDPs are problems where there is a finite
state describing the world and a finite number of actions that
can be taken, and each action has an unknown reward asso-
ciated with it. Returning to the initial e-commerce example,
the state would be a user’s history on the site and the inter-
action history for all the items in the online catalogue. The
action would be a choice of which item to show to the user,
and the reward would be whether the user purchases the
item. Importantly, the effects of the action and the final user
interaction go on to affect the state of the system and change
future actions. This way of thinking about recommendations
is a useful way to account for both the generality of these sys-
tems (beyond just e-commerce) and complications in building
a robust system.

As a point of comparison, let’s look at a solution to an
MDP that has gained popularity — playing Atari with rein-

What Are Recommendations? 21

forcement learning.4 A good way to do this is by looking at
the number of parameters involved in defining the problem;
it can serve as a proxy for how complex our solution must be.
An Atari screen has a resolution of 160x192 pixels and a max-
imum of 128 colors. This corresponds to a state that can be
represented by 3,932,160 numbers. The action state can be en-
coded by three numbers, two for the left/right and up/down
position of the joystick and one for the button. Finally, the re-
ward is simply how much a user’s score has gone up.

In contrast, the Netflix recommendations dataset5 con-
tains 17,770 movies, rated from 1 to 5 by 480,189 users. This
creates a state representable by 42,664,792,650 numbers (and
this is if we ignore the order in which a user watches movies!).
The number of actions we can take is equal to the number of
items we have multiplied by the number of recommendations

4 See https://arxiv.org/abs/1312.5602.

5 See https://www.kaggle.com/netflix-inc/netflix-prize-data.

Action:
item
shown
to user

State:
user and
item
interaction
history

Purchased: reward +5

Not purchased: reward -1

figure 2.9 A recommendation system modeled as a Markov

decision process.

22 What Are Recommendations?

we want to show the user. Even if we only recommend one
movie, that’s an action state representable by 17,770 numbers!
Furthermore, the reward can become quite tricky to calcu-
late. We can look at whether a user watches the movie, but
we might also consider what rating that user gives it, whether
they watch the whole thing, or whether that movie recom-
mendation influences their decision to watch another movie
(for example, if we recommended 2 Fast 2 Furious but the user
decides to watch the original Fast and Furious first).

In order to deal with this complexity, various algorithms
have been created that take advantage of some structure we
can find in the data. This structure can be used to reduce the
number of parameters needed to model the problem and
make a model tractable. As an example, classical collabora-
tive filtering algorithms (described in detail in 3.1.1 Collab-
orative Filtering) rely on the assumption that people can be
considered similar if they interact with similar items, and that
people want to see items that similar people like. What this
does is reduce the number of possible recommended items to
those our friends have interacted with, or those that people
who’ve bought similar things to items we’ve purchased have
interacted with. This may seem like a fairly benign assump-
tion to make, but what happens, for example, with the news
media if most people see the same 90% of articles from the
major headlines, and a user’s personal taste is only evident
from the last 10% of articles they look at? We discuss some of
the possible social effects of this in 7.1 Filter Bubbles & Echo
Chambers.

Multimodal embeddings try to approach this problem by
avoiding it entirely. Instead of operating on every item and

What Are Recommendations? 23

every user separately, we only consider the properties that
make up the objects. With books, for example, this means
that we only need to consider the words that make up a book’s
summary. This may seem like making the problem much
harder, but it’s a method that also comes with a lot more
data, since each item has a wealth of data associated with
it. Furthermore, since we are training our system simply to
find good representations of the books, as opposed to directly
creating recommendations, we simplify the action phase of
the algorithm as well. We now only have to put books in the
neighborhood of books other people have liked, and far away
from books other people haven’t liked.

2.2.2 New Data
Another difficulty is how to deal with new items. For ex-

ample, if we have a new article that no one has interacted with,
how do we know what types of users might enjoy it if we are
relying on the interactions of "similar users" for our recom-
mendations? Recommendation systems such as these on the
internet generally also come with explanations in the form of:

"You read article A, and so did Alice. Alice also read article B,
so you should read it, too." In the absence of a user interacting
with the article, however, we don’t know how it fits in with user
preferences. This is the cold start problem mentioned earlier.

Many methods attempt to solve it by using metadata about
the objects. So, if you generally read political articles, we will
recommend to you our new political article, regardless of who
has interacted with it. This, however, can lead to very bad rec-
ommendations, because we have to make strong assumptions
about what properties to extract out of an article so that our

22 What Are Recommendations?

we want to show the user. Even if we only recommend one
movie, that’s an action state representable by 17,770 numbers!
Furthermore, the reward can become quite tricky to calcu-
late. We can look at whether a user watches the movie, but
we might also consider what rating that user gives it, whether
they watch the whole thing, or whether that movie recom-
mendation influences their decision to watch another movie
(for example, if we recommended 2 Fast 2 Furious but the user
decides to watch the original Fast and Furious first).

In order to deal with this complexity, various algorithms
have been created that take advantage of some structure we
can find in the data. This structure can be used to reduce the
number of parameters needed to model the problem and
make a model tractable. As an example, classical collabora-
tive filtering algorithms (described in detail in 3.1.1 Collab-
orative Filtering) rely on the assumption that people can be
considered similar if they interact with similar items, and that
people want to see items that similar people like. What this
does is reduce the number of possible recommended items to
those our friends have interacted with, or those that people
who’ve bought similar things to items we’ve purchased have
interacted with. This may seem like a fairly benign assump-
tion to make, but what happens, for example, with the news
media if most people see the same 90% of articles from the
major headlines, and a user’s personal taste is only evident
from the last 10% of articles they look at? We discuss some of
the possible social effects of this in 7.1 Filter Bubbles & Echo
Chambers.

Multimodal embeddings try to approach this problem by
avoiding it entirely. Instead of operating on every item and

What Are Recommendations? 23

every user separately, we only consider the properties that
make up the objects. With books, for example, this means
that we only need to consider the words that make up a book’s
summary. This may seem like making the problem much
harder, but it’s a method that also comes with a lot more
data, since each item has a wealth of data associated with
it. Furthermore, since we are training our system simply to
find good representations of the books, as opposed to directly
creating recommendations, we simplify the action phase of
the algorithm as well. We now only have to put books in the
neighborhood of books other people have liked, and far away
from books other people haven’t liked.

2.2.2 New Data
Another difficulty is how to deal with new items. For ex-

ample, if we have a new article that no one has interacted with,
how do we know what types of users might enjoy it if we are
relying on the interactions of "similar users" for our recom-
mendations? Recommendation systems such as these on the
internet generally also come with explanations in the form of:

"You read article A, and so did Alice. Alice also read article B,
so you should read it, too." In the absence of a user interacting
with the article, however, we don’t know how it fits in with user
preferences. This is the cold start problem mentioned earlier.

Many methods attempt to solve it by using metadata about
the objects. So, if you generally read political articles, we will
recommend to you our new political article, regardless of who
has interacted with it. This, however, can lead to very bad rec-
ommendations, because we have to make strong assumptions
about what properties to extract out of an article so that our

24 What Are Recommendations?

system will have a general understanding of it. What if you
don’t actually care about politics in general, and just want to
read about a certain event or figure? In that case, our system
would have to have a special tag that takes that into account.
Alternatively, you may simply like long-form political edito-
rials and nothing else; how can a metadata algorithm know
this, unless we have already introduced "long-form politics"
as a tag in our system?

Multimodal embeddings are able to deal with this by look-
ing directly at the content that is being recommended and
learning their own way of understanding the relevant fea-
tures. This stems from the trend in machine learning of using
deep learning to automatically find what aspects of the data
are interesting.6 The thought is: why should I tell the system

6 This is called feature engineering, and it is generally something

that must be done with some domain expertise. Deep learning, how-

ever, has shown that it is able to do automatic feature engineering,

often finding better features than experts would!

User

Item Item

User Item

Item

User

User

Item

User

New
Item ??
?

?

figure 2.10 Collaborative filtering is unable to make recommen-

dations for a new item.

What Are Recommendations? 25

that I think "long-form politics" will be important, when it can
learn that by itself? In fact, this is a much more robust way of
doing things, since the machine is able to find a much wider
variety of ways of representing the items than a human could.

MMEs rely only on the content of the items being recom-
mended and the items that users have interacted with in the
past. This helps us completely avoid the cold start problem,
because we don’t need to know who is interacting with a new
piece of media or what tags are associated with it; we simply
need to know its content. The algorithm is able to use that
information to infer how the content aligns with a person’s
interests. We can recommend a new article to you because the
topic/tone/style aligns with your preferences, not because of
other users' interactions.

2.2.3 Missing Data and Evaluation
Finally, we come to the biggest difficulty with recommen-

dations: evaluation. When first creating a recommendation
system, you have to decide what you are actually trying to do.
Are you trying to predict whether a user will interact with a
new item, or predict the user’s preference order for various
items? How do you know when you’ve failed? How do you
know when you’ve succeeded? How do you deal with the fact
that your model is fundamentally altering the state of the
world it is trying to model?

Generally, when a recommendation system is being creat-
ed, data is truncated in time, and we try to predict the new-
est data using the oldest data. This is to simulate the fact that
when training a model, we cannot ask the user whether they
would like a recommendation or not. This changes the prob-

24 What Are Recommendations?

system will have a general understanding of it. What if you
don’t actually care about politics in general, and just want to
read about a certain event or figure? In that case, our system
would have to have a special tag that takes that into account.
Alternatively, you may simply like long-form political edito-
rials and nothing else; how can a metadata algorithm know
this, unless we have already introduced "long-form politics"
as a tag in our system?

Multimodal embeddings are able to deal with this by look-
ing directly at the content that is being recommended and
learning their own way of understanding the relevant fea-
tures. This stems from the trend in machine learning of using
deep learning to automatically find what aspects of the data
are interesting.6 The thought is: why should I tell the system

6 This is called feature engineering, and it is generally something

that must be done with some domain expertise. Deep learning, how-

ever, has shown that it is able to do automatic feature engineering,

often finding better features than experts would!

User

Item Item

User Item

Item

User

User

Item

User

New
Item ??
?

?

figure 2.10 Collaborative filtering is unable to make recommen-

dations for a new item.

What Are Recommendations? 25

that I think "long-form politics" will be important, when it can
learn that by itself? In fact, this is a much more robust way of
doing things, since the machine is able to find a much wider
variety of ways of representing the items than a human could.

MMEs rely only on the content of the items being recom-
mended and the items that users have interacted with in the
past. This helps us completely avoid the cold start problem,
because we don’t need to know who is interacting with a new
piece of media or what tags are associated with it; we simply
need to know its content. The algorithm is able to use that
information to infer how the content aligns with a person’s
interests. We can recommend a new article to you because the
topic/tone/style aligns with your preferences, not because of
other users' interactions.

2.2.3 Missing Data and Evaluation
Finally, we come to the biggest difficulty with recommen-

dations: evaluation. When first creating a recommendation
system, you have to decide what you are actually trying to do.
Are you trying to predict whether a user will interact with a
new item, or predict the user’s preference order for various
items? How do you know when you’ve failed? How do you
know when you’ve succeeded? How do you deal with the fact
that your model is fundamentally altering the state of the
world it is trying to model?

Generally, when a recommendation system is being creat-
ed, data is truncated in time, and we try to predict the new-
est data using the oldest data. This is to simulate the fact that
when training a model, we cannot ask the user whether they
would like a recommendation or not. This changes the prob-

26 What Are Recommendations?

lem into one of predicting whether a user did, in the newest
data, interact with a recommended item (essentially remov-
ing any notion of feedback). It is important to realize, though,
that this is fundamentally a different problem, and comes
with its own additional problems.

For example, if I predicted that you would like Introduction
to Algorithms but you didn’t interact with it in the latest data,
then was I wrong? Should I penalize my algorithm in favor
of it predicting that you wouldn’t like the book? If you as a
user have only given me a very small sample of data regarding
your preferences, it is impossible to tell. This is why current
recommendation methods are very quick to put users into
very small groups of recommendations; they assume that
anything you haven’t interacted with is something you don’t
like, instead of simply being something you haven’t had the
chance to interact with yet. This is particularly problematic
because most users only interact with a small percentage of
a vast number of possible items. (How many movies from the
Netflix catalogue have you looked at? How many items from
Amazon’s full listing have you bought?)

As a result, the only motivated way to train a recommen-
dation system is online, using A/B testing, multi-armed ban-
dits,7 or similar algorithms from the reinforcement learning
community. These algorithms explore how you may react
to different items, and they operate on user feedback, as op-

7 Multi-armed bandits is a generalization of A/B testing where multi-

ple different results are possible. It uses a much more statistically mo-

tivated way of deciding when to pick one result over another when

compared to classic A/B testing.

What Are Recommendations? 27

posed to historical data. This removes the assumption that
not interacting is the same as not liking, as well as intrinsical-
ly incorporating that feedback.

However, doing this is hard — and it is hard for reasons
that no algorithm can fix. We must show results to users and
get their feedback. This requires having a large enough and
active enough user base to be able to test and refine the sys-
tem. Furthermore, it requires a good enough data pipeline to
take this interaction data in and refine the model on the fly,
as more interactions occur. Consequently, it generally takes
much longer to train a model that has satisfactory results.

2.3 What Are the Solutions?
We can see that recommendations is a very complex prob-

lem. There are many decisions to be made about algorithm,
representation and data quality. In addition, it may not always
be obvious what is being optimized for or how to best capture
this as a machine learning task. Because of these subtleties,
it is important to have a good understanding of the variety of
algorithms that support these recommendation systems. By
understanding the algorithms, choices can be made to miti-
gate many of the complications introduced here.

26 What Are Recommendations?

lem into one of predicting whether a user did, in the newest
data, interact with a recommended item (essentially remov-
ing any notion of feedback). It is important to realize, though,
that this is fundamentally a different problem, and comes
with its own additional problems.

For example, if I predicted that you would like Introduction
to Algorithms but you didn’t interact with it in the latest data,
then was I wrong? Should I penalize my algorithm in favor
of it predicting that you wouldn’t like the book? If you as a
user have only given me a very small sample of data regarding
your preferences, it is impossible to tell. This is why current
recommendation methods are very quick to put users into
very small groups of recommendations; they assume that
anything you haven’t interacted with is something you don’t
like, instead of simply being something you haven’t had the
chance to interact with yet. This is particularly problematic
because most users only interact with a small percentage of
a vast number of possible items. (How many movies from the
Netflix catalogue have you looked at? How many items from
Amazon’s full listing have you bought?)

As a result, the only motivated way to train a recommen-
dation system is online, using A/B testing, multi-armed ban-
dits,7 or similar algorithms from the reinforcement learning
community. These algorithms explore how you may react
to different items, and they operate on user feedback, as op-

7 Multi-armed bandits is a generalization of A/B testing where multi-

ple different results are possible. It uses a much more statistically mo-

tivated way of deciding when to pick one result over another when

compared to classic A/B testing.

What Are Recommendations? 27

posed to historical data. This removes the assumption that
not interacting is the same as not liking, as well as intrinsical-
ly incorporating that feedback.

However, doing this is hard — and it is hard for reasons
that no algorithm can fix. We must show results to users and
get their feedback. This requires having a large enough and
active enough user base to be able to test and refine the sys-
tem. Furthermore, it requires a good enough data pipeline to
take this interaction data in and refine the model on the fly,
as more interactions occur. Consequently, it generally takes
much longer to train a model that has satisfactory results.

2.3 What Are the Solutions?
We can see that recommendations is a very complex prob-

lem. There are many decisions to be made about algorithm,
representation and data quality. In addition, it may not always
be obvious what is being optimized for or how to best capture
this as a machine learning task. Because of these subtleties,
it is important to have a good understanding of the variety of
algorithms that support these recommendation systems. By
understanding the algorithms, choices can be made to miti-
gate many of the complications introduced here.

28 What Are Recommendations? How Do Recommendations Work? 29

chapter 3
How Do Recommendations Work?

In order to fully understand the current landscape of rec-
ommendation systems, it’s important to go through the histo-
ry of the algorithmic advancements. No method created yet is
a one-size-fits-all solution, so it’s essential to understand the
benefits of all possible methods in order to create the best sys-
tem for your problem.

Furthermore, this is an active field of research, and new
algorithms and methods are constantly being published. One
result of this volatility in the field is that an understanding
of the nuances of your data is necessary in making proper al-
gorithmic choices; no current algorithm is robust enough to
take in arbitrary data and output high-quality results. Even
the multimodal approaches we present in this report are
still fragile and require care when being used (as we discuss
in 4.2.3 Failures). As a result, knowing the variety of recom-
mendation algorithms that are available and iterating in com-
plexity is crucial for building a high-quality recommendation
system.

28 What Are Recommendations? How Do Recommendations Work? 29

chapter 3
How Do Recommendations Work?

In order to fully understand the current landscape of rec-
ommendation systems, it’s important to go through the histo-
ry of the algorithmic advancements. No method created yet is
a one-size-fits-all solution, so it’s essential to understand the
benefits of all possible methods in order to create the best sys-
tem for your problem.

Furthermore, this is an active field of research, and new
algorithms and methods are constantly being published. One
result of this volatility in the field is that an understanding
of the nuances of your data is necessary in making proper al-
gorithmic choices; no current algorithm is robust enough to
take in arbitrary data and output high-quality results. Even
the multimodal approaches we present in this report are
still fragile and require care when being used (as we discuss
in 4.2.3 Failures). As a result, knowing the variety of recom-
mendation algorithms that are available and iterating in com-
plexity is crucial for building a high-quality recommendation
system.

30 How Do Recommendations Work?

3.1 History of Recommendation Systems

3.1.1 Collaborative Filtering
The term collaborative filtering first appeared in a 1992 pa-

per describing Tapestry,1 an experimental mail system devel-
oped to help users filter for interesting emails. Collaborative
filtering was novel because it introduced a new dimension to
the recommendation problem: user feedback. In addition to
filtering documents by content keywords, this made it possi-
ble to narrow down the results to documents that others have
found interesting. User feedback data can be explicit or im-
plicit. When a user provides explicit preference information
(such as liking or disliking an email), the data is considered
explicit. Implicit data, on the other hand, is generated by user
actions from which email preferences are inferred. One ex-
ample of implicit data is the number of times a user forwards
an email.

Recommendation systems today continue to use collab-
orative filtering, but the collaborative data used is more ex-
tensive, the filtering methods more sophisticated. Given a set
of rich historical interaction data, a recommendation system
attempts to tease out some information that allows it to pre-
dict user preferences. One approach is to identify a group of
similar users from the data and assume they share the same
preferences. If Alice liked two out of the three books that Bob
liked, perhaps Alice is similar to Bob and the system can rec-
ommend the third book Bob liked to Alice? This neighborhood

1 See https://www.ischool.utexas.edu/\~i385d/readings/Goldberg_

UsingCollaborative_92.pdf.

How Do Recommendations Work? 31

strategy disregards the underlying content — it does not need
to know that the books Bob and Alice both liked were from
the Harry Potter series. On the other hand, the lack of domain
knowledge means that neighborhood methods can only pre-
dict preferences for items they have seen before (the cold start
problem). In the example of Alice and Bob, if there is a new
Harry Potter book and no one has read it before, the system
will not know what to do with it.

What sort of representation for users should we use such
that recommendation systems can digest it? Users and their
interactions with various items can first be visualized using
a graph. In figure 3.1, we see that there are three users (Al-
ice, Bob, Charlie) and four items (Sorcerer’s Stone, Chamber of
Secrets, Python 101, JavaScript 101). A line between a user and
an item means that an interaction occurred. This interac-
tion can be an explicit "like" or an implicit "read." If we have
more information about the interaction, that can be added

Sorcerer’s
Stone

Chamber
of Secrets

Python
101

Javascript
101

Bob

Alice

Charlie

figure 3.1 Graph of user and item interactions.

30 How Do Recommendations Work?

3.1 History of Recommendation Systems

3.1.1 Collaborative Filtering
The term collaborative filtering first appeared in a 1992 pa-

per describing Tapestry,1 an experimental mail system devel-
oped to help users filter for interesting emails. Collaborative
filtering was novel because it introduced a new dimension to
the recommendation problem: user feedback. In addition to
filtering documents by content keywords, this made it possi-
ble to narrow down the results to documents that others have
found interesting. User feedback data can be explicit or im-
plicit. When a user provides explicit preference information
(such as liking or disliking an email), the data is considered
explicit. Implicit data, on the other hand, is generated by user
actions from which email preferences are inferred. One ex-
ample of implicit data is the number of times a user forwards
an email.

Recommendation systems today continue to use collab-
orative filtering, but the collaborative data used is more ex-
tensive, the filtering methods more sophisticated. Given a set
of rich historical interaction data, a recommendation system
attempts to tease out some information that allows it to pre-
dict user preferences. One approach is to identify a group of
similar users from the data and assume they share the same
preferences. If Alice liked two out of the three books that Bob
liked, perhaps Alice is similar to Bob and the system can rec-
ommend the third book Bob liked to Alice? This neighborhood

1 See https://www.ischool.utexas.edu/\~i385d/readings/Goldberg_

UsingCollaborative_92.pdf.

How Do Recommendations Work? 31

strategy disregards the underlying content — it does not need
to know that the books Bob and Alice both liked were from
the Harry Potter series. On the other hand, the lack of domain
knowledge means that neighborhood methods can only pre-
dict preferences for items they have seen before (the cold start
problem). In the example of Alice and Bob, if there is a new
Harry Potter book and no one has read it before, the system
will not know what to do with it.

What sort of representation for users should we use such
that recommendation systems can digest it? Users and their
interactions with various items can first be visualized using
a graph. In figure 3.1, we see that there are three users (Al-
ice, Bob, Charlie) and four items (Sorcerer’s Stone, Chamber of
Secrets, Python 101, JavaScript 101). A line between a user and
an item means that an interaction occurred. This interac-
tion can be an explicit "like" or an implicit "read." If we have
more information about the interaction, that can be added

Sorcerer’s
Stone

Chamber
of Secrets

Python
101

Javascript
101

Bob

Alice

Charlie

figure 3.1 Graph of user and item interactions.

32 How Do Recommendations Work?

as a weighting factor to the line. For example, if a user rated
an interaction on a scale of 1 to 5, the line can be weighted
accordingly.

In figure 3.1 we see, for example, that Alice likes Cham-
ber of Secrets, Javascript 101, and Python 101 while Charlie likes
Chamber of Secrets and Python 101. This graphical represen-
tation needs to be transformed into a matrix before recom-
mendation algorithms can process it (a matrix formed like
this to show interactions is called an adjacency matrix). By
convention, each row of the matrix represents a user and each
column of the matrix represents an item. figure 3.2 shows
the matrix derived from our corresponding graph. Each value
of a line in the graph is entered into the corresponding (User,
Item) cell in the matrix. In our example, the line between Al-
ice and Chamber of Secrets is entered as a 1 in cell (2,1) of the
matrix, since we assign Alice to row one and Chamber of Se-
crets to column two. Our example with three users and four
items translates into a matrix of size 3x4.

In real-life applications, these interaction matrices are

Javascript
101

Sorcerer’s
Stone

Python
101

Chamber of
Secrets

10

1 1

10

1

0

1

1

0

0

Alice

Bob

Charlie

figure 3.2 User and item interactions in matrix representation.

How Do Recommendations Work? 33

large and sparse. The MovieLens 100K dataset, 2 often used
for benchmarking purposes, has 100,000 ratings from 943
users on 1,682 movies. The corresponding matrix has a di-
mension of 943x1682 and is sparse; only 6.3% of the matrix
has data. This sparsity makes it incredibly hard to extract any
meaningful information from the graph structure, since we
simply have no clue whether the other 93.7% of interactions
would go well or poorly.

Furthermore, these matrices usually contain weak prefer-
ence signals. Imagine a user who rates many movies highly
and indiscriminately. This user would be connected to almost
every movie in the catalogue and thus would be connected to
a large number of movies in the catalogue and would have
a disproportionate effect on the evaluation of recommenda-
tions. In general, it is said that collaborative filtering is not
very "spam-resistant" for this reason; popular items or users
will unduly influence any future recommendations. At the
other extreme, a user who rates very sparingly does not give
our system very much information about their preferences.
As a result, their recommendations will be more susceptible
to the spammy data.

3.1.1.1 k-Nearest Neighbor (k-NN)
Now suppose we would like to make a recommendation for

Bob. We could start by determining who is similar to Bob. One
reasonable metric to use is "the number of items that both us-
ers interacted with." Would this work? Imagine two cases: in
the first case, Frank and Grace rated a total of 100 items, and

2 See https://www.kaggle.com/prajitdatta/movielens-100k-dataset.

32 How Do Recommendations Work?

as a weighting factor to the line. For example, if a user rated
an interaction on a scale of 1 to 5, the line can be weighted
accordingly.

In figure 3.1 we see, for example, that Alice likes Cham-
ber of Secrets, Javascript 101, and Python 101 while Charlie likes
Chamber of Secrets and Python 101. This graphical represen-
tation needs to be transformed into a matrix before recom-
mendation algorithms can process it (a matrix formed like
this to show interactions is called an adjacency matrix). By
convention, each row of the matrix represents a user and each
column of the matrix represents an item. figure 3.2 shows
the matrix derived from our corresponding graph. Each value
of a line in the graph is entered into the corresponding (User,
Item) cell in the matrix. In our example, the line between Al-
ice and Chamber of Secrets is entered as a 1 in cell (2,1) of the
matrix, since we assign Alice to row one and Chamber of Se-
crets to column two. Our example with three users and four
items translates into a matrix of size 3x4.

In real-life applications, these interaction matrices are

Javascript
101

Sorcerer’s
Stone

Python
101

Chamber of
Secrets

10

1 1

10

1

0

1

1

0

0

Alice

Bob

Charlie

figure 3.2 User and item interactions in matrix representation.

How Do Recommendations Work? 33

large and sparse. The MovieLens 100K dataset, 2 often used
for benchmarking purposes, has 100,000 ratings from 943
users on 1,682 movies. The corresponding matrix has a di-
mension of 943x1682 and is sparse; only 6.3% of the matrix
has data. This sparsity makes it incredibly hard to extract any
meaningful information from the graph structure, since we
simply have no clue whether the other 93.7% of interactions
would go well or poorly.

Furthermore, these matrices usually contain weak prefer-
ence signals. Imagine a user who rates many movies highly
and indiscriminately. This user would be connected to almost
every movie in the catalogue and thus would be connected to
a large number of movies in the catalogue and would have
a disproportionate effect on the evaluation of recommenda-
tions. In general, it is said that collaborative filtering is not
very "spam-resistant" for this reason; popular items or users
will unduly influence any future recommendations. At the
other extreme, a user who rates very sparingly does not give
our system very much information about their preferences.
As a result, their recommendations will be more susceptible
to the spammy data.

3.1.1.1 k-Nearest Neighbor (k-NN)
Now suppose we would like to make a recommendation for

Bob. We could start by determining who is similar to Bob. One
reasonable metric to use is "the number of items that both us-
ers interacted with." Would this work? Imagine two cases: in
the first case, Frank and Grace rated a total of 100 items, and

2 See https://www.kaggle.com/prajitdatta/movielens-100k-dataset.

34 How Do Recommendations Work?

2 of the items are the same; in the second case, Frank and Dan
rated a total of 5 items and 2 of the items are the same. Our
original metric would suggest that Frank is equally similar to
Grace and Dan. Clearly this is not true. For our original metric
to be useful, it needs to be normalized. We divide by the total
number of items interacted with by both users to obtain a new
metric.

Using this new metric to measure similarity (or distance),
we compute the distance between (Alice, Charlie) to be 2/3
and between (Bob, Charlie) to be 1/3. Since Charlie is more
similar to Alice, we assume that Charlie will also be interested
in what Alice has liked. Looking back to the matrix represen-
tation, we recommend JavaScript 101 to Charlie.

figure 3.3 Which similarity score is chosen for collaborative

filtering can substantially change the outcomes.

Item H

Item I

Frank Grace 49 Items49 Items

Item A

Item B

Frank Dan

Item F

Item G

Item E

Similarity = 2 OR Similarity = 2/100 = 0.02

Similarity = 2 OR Similarity = 2/5 = 0.4

How Do Recommendations Work? 35

The k-NN algorithm is based on this idea. Instead of
finding the most similar user (or "neighbor"), it looks for k
of them. In addition, the algorithm uses various distance
measures.3 In the context of recommenders, one can think
of k as a trade-off between precision and generality. A large
k implies that the recommendation result is obtained by ag-
gregating preference information for many similar users.4

3 Euclidean distance (straight-line distance between two points)

is commonly used for continuous variables and Hamming distance

(number of positions at which the strings are different) for discrete

variables.

4 Examples of ways to aggregate information across users are mean

and median.

Sorcerer’s
Stone

Chamber
of Secrets

Python
101

Javascript
101

Bob

Alice

Charlie

Distance between Alice and Charlie = 2/3 = 0.66

Distance between Bob and Charlie = 1/3 = 0.33

figure 3.4 Dividing by nearest neighbors helps us understand

which other user is most similar to Charlie.

34 How Do Recommendations Work?

2 of the items are the same; in the second case, Frank and Dan
rated a total of 5 items and 2 of the items are the same. Our
original metric would suggest that Frank is equally similar to
Grace and Dan. Clearly this is not true. For our original metric
to be useful, it needs to be normalized. We divide by the total
number of items interacted with by both users to obtain a new
metric.

Using this new metric to measure similarity (or distance),
we compute the distance between (Alice, Charlie) to be 2/3
and between (Bob, Charlie) to be 1/3. Since Charlie is more
similar to Alice, we assume that Charlie will also be interested
in what Alice has liked. Looking back to the matrix represen-
tation, we recommend JavaScript 101 to Charlie.

figure 3.3 Which similarity score is chosen for collaborative

filtering can substantially change the outcomes.

Item H

Item I

Frank Grace 49 Items49 Items

Item A

Item B

Frank Dan

Item F

Item G

Item E

Similarity = 2 OR Similarity = 2/100 = 0.02

Similarity = 2 OR Similarity = 2/5 = 0.4

How Do Recommendations Work? 35

The k-NN algorithm is based on this idea. Instead of
finding the most similar user (or "neighbor"), it looks for k
of them. In addition, the algorithm uses various distance
measures.3 In the context of recommenders, one can think
of k as a trade-off between precision and generality. A large
k implies that the recommendation result is obtained by ag-
gregating preference information for many similar users.4

3 Euclidean distance (straight-line distance between two points)

is commonly used for continuous variables and Hamming distance

(number of positions at which the strings are different) for discrete

variables.

4 Examples of ways to aggregate information across users are mean

and median.

Sorcerer’s
Stone

Chamber
of Secrets

Python
101

Javascript
101

Bob

Alice

Charlie

Distance between Alice and Charlie = 2/3 = 0.66

Distance between Bob and Charlie = 1/3 = 0.33

figure 3.4 Dividing by nearest neighbors helps us understand

which other user is most similar to Charlie.

36 How Do Recommendations Work?

As a result, it is less targeted and more general. In the extreme
case where k=1, the system relies on the preference of a single
user.

The algorithm, while simple to implement, is computa-
tionally expensive because it calculates a distance measure
for all users in the training set.5 For large datasets, it is often
intractable. On the other hand, if the dataset is very small,
simple methods like k-dimensional (k-d) trees would suffice.
Here, as the name implies, data is split (approximately) in
half along each dimension. To find the nearest neighbor of a
data point, one just needs to walk down the tree. Unfortunate-
ly, like k-NN, the k-d tree algorithm suffers from the curse of
dimensionality; the large number of subbranches in the tree
makes finding the nearest neighbor prohibitive.

3.1.1.2 Locality-Sensitive Hashing (LSH) Forest
Instead of finding the nearest neighbor, getting an ap-

proximate nearest neighbor often suffices in real-life applica-
tions. Approximate algorithms are stochastic. As mentioned
in our report "Probabilistic Methods for Realtime Streams"
(FF02),6 even though the solutions are not exact and are cor-
rect only to a certain probability, these algorithms allow us
to trade off accuracy with speed. LSH Forest is an example of
such an algorithm.7

5 This makes the algorithm O(N^2).

6 See http://fastforwardlabs.com/research/FF02.

7 See http://ilpubs.stanford.edu:8090/678/1/2005-14.pdf and

https://www.youtube.com/watch?v=kKRvEJrvvso.

How Do Recommendations Work? 37

Given a set of data points, LSH attempts to group (through
a hash function) points that are close together into one buck-
et, as illustrated in figure 3.5. Points that end up in the same
bucket as the target point are considered similar; their actual
distance measures to the target are computed. The top k (as
in k-NN) points are returned. The probabilistic nature of LSH
implies that each run of the algorithm can produce different
outcomes — that is, each time the algorithm is run, it can find
different sets of points that belong in the same bucket as the
target. To increase the chances of finding more similar points,
the algorithm is run multiple times, with each run yielding a
set of points that are close to the target (hence the name "For-
est"). The top k points are selected from the union of these sets.

3.1.2 Matrix Factorization
Up until now we have been discussing recommendation

methods based on user similarities. These neighborhood

Hashing Key Space

Bucket 1

Bucket 2

Bucket 3

Bucket 4

figure 3.5 LSH groups datapoints into buckets.

36 How Do Recommendations Work?

As a result, it is less targeted and more general. In the extreme
case where k=1, the system relies on the preference of a single
user.

The algorithm, while simple to implement, is computa-
tionally expensive because it calculates a distance measure
for all users in the training set.5 For large datasets, it is often
intractable. On the other hand, if the dataset is very small,
simple methods like k-dimensional (k-d) trees would suffice.
Here, as the name implies, data is split (approximately) in
half along each dimension. To find the nearest neighbor of a
data point, one just needs to walk down the tree. Unfortunate-
ly, like k-NN, the k-d tree algorithm suffers from the curse of
dimensionality; the large number of subbranches in the tree
makes finding the nearest neighbor prohibitive.

3.1.1.2 Locality-Sensitive Hashing (LSH) Forest
Instead of finding the nearest neighbor, getting an ap-

proximate nearest neighbor often suffices in real-life applica-
tions. Approximate algorithms are stochastic. As mentioned
in our report "Probabilistic Methods for Realtime Streams"
(FF02),6 even though the solutions are not exact and are cor-
rect only to a certain probability, these algorithms allow us
to trade off accuracy with speed. LSH Forest is an example of
such an algorithm.7

5 This makes the algorithm O(N^2).

6 See http://fastforwardlabs.com/research/FF02.

7 See http://ilpubs.stanford.edu:8090/678/1/2005-14.pdf and

https://www.youtube.com/watch?v=kKRvEJrvvso.

How Do Recommendations Work? 37

Given a set of data points, LSH attempts to group (through
a hash function) points that are close together into one buck-
et, as illustrated in figure 3.5. Points that end up in the same
bucket as the target point are considered similar; their actual
distance measures to the target are computed. The top k (as
in k-NN) points are returned. The probabilistic nature of LSH
implies that each run of the algorithm can produce different
outcomes — that is, each time the algorithm is run, it can find
different sets of points that belong in the same bucket as the
target. To increase the chances of finding more similar points,
the algorithm is run multiple times, with each run yielding a
set of points that are close to the target (hence the name "For-
est"). The top k points are selected from the union of these sets.

3.1.2 Matrix Factorization
Up until now we have been discussing recommendation

methods based on user similarities. These neighborhood

Hashing Key Space

Bucket 1

Bucket 2

Bucket 3

Bucket 4

figure 3.5 LSH groups datapoints into buckets.

38 How Do Recommendations Work?

approaches do not scale well to larger datasets and lack un-
derstanding of the underlying data. Given a user-book inter-
action matrix, neighborhood approaches can tell you that
Bob and Alice have similar interests, but are unable to explain
that Bob and Alice are similar because they both like young
adult fantasy books.

This lack of understanding about the underlying reasons
for an interaction contributes to collaborative filtering’s in-
ability to deal with spammy data. It also ruins any potential to
deal with the cold start problem, since without interactions
with an item or user, we have no information about it. On the
other hand, matrix factorization, which belongs to a class of
latent factor models, is a different approach that tries to make
sense of the interaction matrix. It does so by finding factors
that explain most or all of the information in the matrix.

Alice

F1 F2

1 1

Bob 1 0

Charlie 1 1

F1 F2

Javascript
101

Sorcerer’s
Stone

Python
101

Chamber of
Secrets

1

1

1

10

0

0

0

figure 3.6 Matrix factorization uses two matrices. The first

showing user preference for factors, and the second showing

item associations with those factors.

How Do Recommendations Work? 39

These factors are extracted from the data mathematically and
do not easily map to humanly noticeable ones.8

Recall that in collaborative filtering, the representation is
the interaction matrix where each row represents a user and
each column represents an item. In matrix factorization we
instead use two smaller matrices to represent this data. The
first matrix contains user preferences for factors (rather than
items), and the second matrix associates items with their fac-
tor representations. As a hypothetical example, instead of
liking all 14 Harry Potter and Twilight books, a user now likes
the "Fantasy" and "Young Adult" factors. Chamber of Secrets is
now represented by the factors "Fantasy" and "Young Adult."
The hope is that this new representation can model underly-
ing features in the data and start approaching the question of
why a user liked a particular item. If our representation can
somehow encode this, then our recommendation algorithm
can use this information in its predictions.

Once a factorized version of the interaction matrix is cre-
ated, there are two ways to use it for recommendations. In the
first approach, we multiply these two matrices to give us an
approximation of the original; issuing a recommendation for
a particular use-item pair just means reading off the corre-
sponding row and column from the new matrix.9 In the sec-
ond (more common) approach, the problem reverts back to

8 In examples throughout this report we use the genre of a book as

an example of these factors for illustrative reasons. Actual factors

will not be as human-interpretable.

9 Again, each user corresponds to a particular row and each item to

a particular column in the matrix.

38 How Do Recommendations Work?

approaches do not scale well to larger datasets and lack un-
derstanding of the underlying data. Given a user-book inter-
action matrix, neighborhood approaches can tell you that
Bob and Alice have similar interests, but are unable to explain
that Bob and Alice are similar because they both like young
adult fantasy books.

This lack of understanding about the underlying reasons
for an interaction contributes to collaborative filtering’s in-
ability to deal with spammy data. It also ruins any potential to
deal with the cold start problem, since without interactions
with an item or user, we have no information about it. On the
other hand, matrix factorization, which belongs to a class of
latent factor models, is a different approach that tries to make
sense of the interaction matrix. It does so by finding factors
that explain most or all of the information in the matrix.

Alice

F1 F2

1 1

Bob 1 0

Charlie 1 1

F1 F2

Javascript
101

Sorcerer’s
Stone

Python
101

Chamber of
Secrets

1

1

1

10

0

0

0

figure 3.6 Matrix factorization uses two matrices. The first

showing user preference for factors, and the second showing

item associations with those factors.

How Do Recommendations Work? 39

These factors are extracted from the data mathematically and
do not easily map to humanly noticeable ones.8

Recall that in collaborative filtering, the representation is
the interaction matrix where each row represents a user and
each column represents an item. In matrix factorization we
instead use two smaller matrices to represent this data. The
first matrix contains user preferences for factors (rather than
items), and the second matrix associates items with their fac-
tor representations. As a hypothetical example, instead of
liking all 14 Harry Potter and Twilight books, a user now likes
the "Fantasy" and "Young Adult" factors. Chamber of Secrets is
now represented by the factors "Fantasy" and "Young Adult."
The hope is that this new representation can model underly-
ing features in the data and start approaching the question of
why a user liked a particular item. If our representation can
somehow encode this, then our recommendation algorithm
can use this information in its predictions.

Once a factorized version of the interaction matrix is cre-
ated, there are two ways to use it for recommendations. In the
first approach, we multiply these two matrices to give us an
approximation of the original; issuing a recommendation for
a particular use-item pair just means reading off the corre-
sponding row and column from the new matrix.9 In the sec-
ond (more common) approach, the problem reverts back to

8 In examples throughout this report we use the genre of a book as

an example of these factors for illustrative reasons. Actual factors

will not be as human-interpretable.

9 Again, each user corresponds to a particular row and each item to

a particular column in the matrix.

40 How Do Recommendations Work?

a k-nearest neighbors problem of finding items with similar
representations (or in this case, factor values) to users. How-
ever, the output of the recommendation system is now a set
of factors relating to preference, which needs to be mapped
to items. Just like in collaborative filtering, where we need a
method to map similar users to ranked items, we now need a
way to map user preferences to items.

To use matrix factorization, the number of factors needs
to be specified. A smaller number is preferred because the
resulting user-factor and item-factor matrices will be small.
This leads to a considerable speedup for both training the

figure 3.7 We can recommend books to Bob based on his factor

preferences. Note that he has already read Sorcerer’s Stone and

Chamber of Secrets so we filter those from the final

recommendation.

Recommended
item

Python
101

Javascript
101

Bob

Alice

Charlie

Chamber
of Secrets

Sorcerer’s
Stone

F1

F2

User
Factors:

User preferences connect
to item preferences

Prisoner of
Azkaban

How Do Recommendations Work? 41

model and offering recommendations. Because matrix fac-
torization enables one to model the interaction matrix, it is
sometimes referred to as model-based collaborative filtering.

3.1.2.1 Nonnegative Matrix Factorization (NMF)
NMF10 is a special kind of matrix factorization used when

the original interaction matrix does not have negative ele-
ments and both smaller decomposed matrices are required
to be nonnegative. In certain applications, the nonnegativity
constraint is preferred because it provides physically mean-
ingful features. An example is an interaction matrix that cap-
tures the number of times a user clicked on an item. The orig-
inal matrix has physical meaning associated with it, and NMF
preserves the nonnegativity of the resulting factor matrices.

In NMF, the decomposition of the original matrix into two
smaller ones is obtained by first defining a cost function11
and subsequently minimizing it, often using stochastic gra-
dient descent (SGD). This algorithm is an example of why
understanding the data we are basing our algorithms on is
so important. Matrix factorization algorithms, like many al-
gorithms based solely on interaction data, can have trouble
converging. Giving our algorithm additional information
about the form and constraints of our data, like the fact that
no entries will ever be negative, helps it converge and come to
a sensible result.

10 See https://arxiv.org/abs/1010.1763.

11 One possibility is to use the Frobenius distance, an extension of the

Euclidean distance to matrices. In practice, regularization parame-

ters are added to the cost function to avoid overfitting.

40 How Do Recommendations Work?

a k-nearest neighbors problem of finding items with similar
representations (or in this case, factor values) to users. How-
ever, the output of the recommendation system is now a set
of factors relating to preference, which needs to be mapped
to items. Just like in collaborative filtering, where we need a
method to map similar users to ranked items, we now need a
way to map user preferences to items.

To use matrix factorization, the number of factors needs
to be specified. A smaller number is preferred because the
resulting user-factor and item-factor matrices will be small.
This leads to a considerable speedup for both training the

figure 3.7 We can recommend books to Bob based on his factor

preferences. Note that he has already read Sorcerer’s Stone and

Chamber of Secrets so we filter those from the final

recommendation.

Recommended
item

Python
101

Javascript
101

Bob

Alice

Charlie

Chamber
of Secrets

Sorcerer’s
Stone

F1

F2

User
Factors:

User preferences connect
to item preferences

Prisoner of
Azkaban

How Do Recommendations Work? 41

model and offering recommendations. Because matrix fac-
torization enables one to model the interaction matrix, it is
sometimes referred to as model-based collaborative filtering.

3.1.2.1 Nonnegative Matrix Factorization (NMF)
NMF10 is a special kind of matrix factorization used when

the original interaction matrix does not have negative ele-
ments and both smaller decomposed matrices are required
to be nonnegative. In certain applications, the nonnegativity
constraint is preferred because it provides physically mean-
ingful features. An example is an interaction matrix that cap-
tures the number of times a user clicked on an item. The orig-
inal matrix has physical meaning associated with it, and NMF
preserves the nonnegativity of the resulting factor matrices.

In NMF, the decomposition of the original matrix into two
smaller ones is obtained by first defining a cost function11
and subsequently minimizing it, often using stochastic gra-
dient descent (SGD). This algorithm is an example of why
understanding the data we are basing our algorithms on is
so important. Matrix factorization algorithms, like many al-
gorithms based solely on interaction data, can have trouble
converging. Giving our algorithm additional information
about the form and constraints of our data, like the fact that
no entries will ever be negative, helps it converge and come to
a sensible result.

10 See https://arxiv.org/abs/1010.1763.

11 One possibility is to use the Frobenius distance, an extension of the

Euclidean distance to matrices. In practice, regularization parame-

ters are added to the cost function to avoid overfitting.

42 How Do Recommendations Work?

3.1.2.1 Singular Value Decomposition (SVD)
Another algorithm often discussed along with matrix fac-

torization is SVD. Conventional SVD of a matrix factorizes it
into a product of three matrices. In the context of an interac-
tion matrix, one can interpret the first matrix as describing
the interaction between users and features, the second as de-
scribing the interaction between items and features, and the
third as a weighting matrix. In contrast to NMF, conventional
SVD is a theoretical solution that gives an exact decomposi-
tion and is only defined for a fully specified matrix. Given that
most historical rating matrices were sparse, early recommen-
dation systems had to replace missing data with substitute
data in order to use SVD. This distorted the data and increased
computational complexity. As a result, conventional SVD is
not commonly used in recommendation systems today.

Simon Funk’s version of SVD (of Netflix Prize fame) is a
spin on the traditional, where only only observed historical
data is fitted.12 By fixing the number of features used to esti-
mate the original interaction matrix, the algorithm works to
decompose it into two smaller matrices. Today when SVD is
mentioned in the literature, it generally refers to this modi-
fied version. When a nonnegativity constraint is not import-
ant, SVD is a popular algorithm because of its accuracy and
scalability.

12 The solution is obtained by using gradient descent to minimize a

cost function based on squared error between the observed and esti-

mated ratings. In practice, regularization and bias terms are added to

the cost function.

How Do Recommendations Work? 43

3.1.2.2 Principal Component Analysis (PCA)
Another algorithm that can be used to extract features to

represent the interaction matrix is PCA. To understand PCA,
take a look at figure 3.8, which shows some data points plot-
ted in a two-dimensional space. The direction (or vector) that
explains the most variability in the data is denoted by the lon-
ger orange line. The remaining variability is explained by the
shorter orange line. PCA works by finding and ranking these
vectors; they are called "principal components" and can be
used to recover the original data. PCA is useful when one is
trying to identify important components and ignore noise in
the data. This can be achieved by using the top principal com-
ponents (instead of all) to build an estimator for the original
dataset.

Using PCA in a recommendation system is straightfor-
ward — it is applied to the interaction matrix and the top k
principal components are used to construct an approxima-
tion of the historical matrix. Similar to the number of factors

Data Principal components

figure 3.8 PCA analysis extracts the directions with the most

variability in the data.

42 How Do Recommendations Work?

3.1.2.1 Singular Value Decomposition (SVD)
Another algorithm often discussed along with matrix fac-

torization is SVD. Conventional SVD of a matrix factorizes it
into a product of three matrices. In the context of an interac-
tion matrix, one can interpret the first matrix as describing
the interaction between users and features, the second as de-
scribing the interaction between items and features, and the
third as a weighting matrix. In contrast to NMF, conventional
SVD is a theoretical solution that gives an exact decomposi-
tion and is only defined for a fully specified matrix. Given that
most historical rating matrices were sparse, early recommen-
dation systems had to replace missing data with substitute
data in order to use SVD. This distorted the data and increased
computational complexity. As a result, conventional SVD is
not commonly used in recommendation systems today.

Simon Funk’s version of SVD (of Netflix Prize fame) is a
spin on the traditional, where only only observed historical
data is fitted.12 By fixing the number of features used to esti-
mate the original interaction matrix, the algorithm works to
decompose it into two smaller matrices. Today when SVD is
mentioned in the literature, it generally refers to this modi-
fied version. When a nonnegativity constraint is not import-
ant, SVD is a popular algorithm because of its accuracy and
scalability.

12 The solution is obtained by using gradient descent to minimize a

cost function based on squared error between the observed and esti-

mated ratings. In practice, regularization and bias terms are added to

the cost function.

How Do Recommendations Work? 43

3.1.2.2 Principal Component Analysis (PCA)
Another algorithm that can be used to extract features to

represent the interaction matrix is PCA. To understand PCA,
take a look at figure 3.8, which shows some data points plot-
ted in a two-dimensional space. The direction (or vector) that
explains the most variability in the data is denoted by the lon-
ger orange line. The remaining variability is explained by the
shorter orange line. PCA works by finding and ranking these
vectors; they are called "principal components" and can be
used to recover the original data. PCA is useful when one is
trying to identify important components and ignore noise in
the data. This can be achieved by using the top principal com-
ponents (instead of all) to build an estimator for the original
dataset.

Using PCA in a recommendation system is straightfor-
ward — it is applied to the interaction matrix and the top k
principal components are used to construct an approxima-
tion of the historical matrix. Similar to the number of factors

Data Principal components

figure 3.8 PCA analysis extracts the directions with the most

variability in the data.

44 How Do Recommendations Work?

in NMF and the number of features in SVD, the number of
components in PCA is a knob that can be adjusted to trade off
the amount of information used and computation tractability.
In practice, it is optimized along with other hyperparameters.

3.1.3 Extensions to Factorization and Collaborative
Filtering

Of the two approaches we’ve discussed, matrix factoriza-
tion algorithms are more widely adopted because they scale
well to large datasets. Unfortunately, both approaches are un-
able to make predictions for users with very few ratings — but
when we shift gears and model user feedback in a probabilis-
tic setting (vs. deterministic, as we have been doing so far), it
is possible to find a solution that scales, works well on sparse
and imbalanced datasets, and performs well when offering
predictions for users with few ratings.

Similar to other matrix factorization methods, we start
by assuming that user preferences are determined by a small
number of unobserved factors and that items are represented
by the same set of factors. The original interaction matrix can
then be decomposed into two smaller feature matrices, a us-
er-feature matrix and an item-feature matrix. As implied by
their names, the user-feature matrix provides information on
the interaction between users and features, and the item-fea-
ture matrix provides information on the interaction between
items and factors. A user-item interaction is just a linear com-
bination of the two feature matrices. In previous matrix fac-
torization models these feature matrices are deterministic;
in a probabilistic setting we assume they follow some prob-
abilistic distribution. As a result, the observed interaction is

How Do Recommendations Work? 45

also probabilistic, and its outcome is dependent on the two
matrices.

An example of such an approach is probabilistic matrix
factorization (PMF).13 In PMF, we first assume that the us-
er-feature and item-feature matrices both follow a Gaussian
process. Given the observed interactions, PMF finds the pa-
rameters that make the two feature matrices most probable in
explaining these interactions.14 Interestingly, this approach
can be thought of as the probabilistic extension of SVD, since
the formulation reduces to SVD if all ratings can be observed.
PMF has been shown to perform well on large, sparse, and
imbalanced datasets where some users have interacted with
many items and others only a few items.

To add to the model zoo, even PMF has many extensions
to it. Bayesian PMF,15 for example, provides distributions in-
stead of point estimates for the feature matrix. This means
that we have a sense of uncertainty for the resulting user-item
preferences and can use that uncertainty either to make more
motivated recommendations or to help our system know the
best questions to ask our users to get a better understanding
of them. Also, based on of the success of neural networks'

13 See https://www.cs.toronto.edu/\~amnih/papers/pmf.pdf.

14 In PMF, we assume both U and V follow a Gaussian process with

zero mean (in other words, they have Gaussian priors). The likelihood

of observing a rating given (U, V) is also Gaussian. When we fix the

observation noise variance and prior variances, the maximization

with respect to (U, V) is equivalent to minimizing the sum of squares

error function with quadratic regularization terms.

15 See https://www.cs.toronto.edu/~amnih/papers/bpmf.pdf.

44 How Do Recommendations Work?

in NMF and the number of features in SVD, the number of
components in PCA is a knob that can be adjusted to trade off
the amount of information used and computation tractability.
In practice, it is optimized along with other hyperparameters.

3.1.3 Extensions to Factorization and Collaborative
Filtering

Of the two approaches we’ve discussed, matrix factoriza-
tion algorithms are more widely adopted because they scale
well to large datasets. Unfortunately, both approaches are un-
able to make predictions for users with very few ratings — but
when we shift gears and model user feedback in a probabilis-
tic setting (vs. deterministic, as we have been doing so far), it
is possible to find a solution that scales, works well on sparse
and imbalanced datasets, and performs well when offering
predictions for users with few ratings.

Similar to other matrix factorization methods, we start
by assuming that user preferences are determined by a small
number of unobserved factors and that items are represented
by the same set of factors. The original interaction matrix can
then be decomposed into two smaller feature matrices, a us-
er-feature matrix and an item-feature matrix. As implied by
their names, the user-feature matrix provides information on
the interaction between users and features, and the item-fea-
ture matrix provides information on the interaction between
items and factors. A user-item interaction is just a linear com-
bination of the two feature matrices. In previous matrix fac-
torization models these feature matrices are deterministic;
in a probabilistic setting we assume they follow some prob-
abilistic distribution. As a result, the observed interaction is

How Do Recommendations Work? 45

also probabilistic, and its outcome is dependent on the two
matrices.

An example of such an approach is probabilistic matrix
factorization (PMF).13 In PMF, we first assume that the us-
er-feature and item-feature matrices both follow a Gaussian
process. Given the observed interactions, PMF finds the pa-
rameters that make the two feature matrices most probable in
explaining these interactions.14 Interestingly, this approach
can be thought of as the probabilistic extension of SVD, since
the formulation reduces to SVD if all ratings can be observed.
PMF has been shown to perform well on large, sparse, and
imbalanced datasets where some users have interacted with
many items and others only a few items.

To add to the model zoo, even PMF has many extensions
to it. Bayesian PMF,15 for example, provides distributions in-
stead of point estimates for the feature matrix. This means
that we have a sense of uncertainty for the resulting user-item
preferences and can use that uncertainty either to make more
motivated recommendations or to help our system know the
best questions to ask our users to get a better understanding
of them. Also, based on of the success of neural networks'

13 See https://www.cs.toronto.edu/\~amnih/papers/pmf.pdf.

14 In PMF, we assume both U and V follow a Gaussian process with

zero mean (in other words, they have Gaussian priors). The likelihood

of observing a rating given (U, V) is also Gaussian. When we fix the

observation noise variance and prior variances, the maximization

with respect to (U, V) is equivalent to minimizing the sum of squares

error function with quadratic regularization terms.

15 See https://www.cs.toronto.edu/~amnih/papers/bpmf.pdf.

46 How Do Recommendations Work?

incredibly nonlinear systems, there is nonlinear matrix factor-
ization,16 which aims to capture more robust features from the
interaction data.

3.1.3.1 Hybrid Collab/Factorization Methods
Recommendation systems based on collaborative filter-

ing and matrix factorization suffer from the cold start prob-
lem — they only work on items users have interacted with.
For example, news article recommendation systems cannot
recommend an article unless enough people have interacted
with it and the system has been rerun to include these inter-
actions. In addition, collaborative filtering methods in partic-
ular are affected by the sparsity problem, since these methods
need enough data to be able to determine similarity between
users. Items interesting to a niche group are difficult to rec-
ommend; items liked by many are overly recommended.

What if we add more information to the recommenda-
tion system, so that it understands what an item is, and what
a user is? Instead of representing Chamber of Secrets as item
i, we can represent it using two features, "Young Adult" and

"Fantasy." Similarly, we can represent Bob using "Male" and
"Age 30." The interaction matrix no longer contains interac-
tions between users and items, but interactions between user
features (in each row) and item features (in each column).17
With this new interaction matrix, we can proceed to use ei-
ther collaborative filtering or matrix factorization to obtain

16 See http://people.ee.duke.edu/\~lcarin/MatrixFactorization.pdf.

17 These features can be fitted numerically (using regression, for

example) or manually encoded.

How Do Recommendations Work? 47

recommendations. Since the resulting recommendations are
for features, they need to be converted to item recommenda-
tions via mapping and aggregation.

The hybrid system alleviates both the cold start and spar-
sity problems. When a new user or item enters the system, it
is no longer "new" because it can be represented by the exist-
ing user or item features in the recommendation system. In
addition, because many items now map onto a common set
of item features (and similarly, many users onto a set of corre-
sponding user features), the interaction matrix is more dense
and results are explainable.

3.1.3.2 Adding Heuristic Combinations of Things
It’s important to note that by adding metadata to the un-

derlying recommendations, additional information can be
considered in the prediction after the fact.

A common way to do this is by calculating a secondary
score for the metadata that is desired and multiplying that
by the score calculated with the recommendation system. For
example, if we wish to constrain recommendation results to
be geographically close to the user, we can calculate a score
describing how close a result is to the chosen location. How-
ever, it is important to make a motivated decision about how
this score is normalized.

If, for example, we normalize all the geographic scores
from [0, 1], then geography can never increase the value for a
particular item. So, if we are showing these scores to the user
we must account for the fact that this geography score will, by
definition, lower the values for all items. On the other hand,
if we only require the score to be positive, then we must be

46 How Do Recommendations Work?

incredibly nonlinear systems, there is nonlinear matrix factor-
ization,16 which aims to capture more robust features from the
interaction data.

3.1.3.1 Hybrid Collab/Factorization Methods
Recommendation systems based on collaborative filter-

ing and matrix factorization suffer from the cold start prob-
lem — they only work on items users have interacted with.
For example, news article recommendation systems cannot
recommend an article unless enough people have interacted
with it and the system has been rerun to include these inter-
actions. In addition, collaborative filtering methods in partic-
ular are affected by the sparsity problem, since these methods
need enough data to be able to determine similarity between
users. Items interesting to a niche group are difficult to rec-
ommend; items liked by many are overly recommended.

What if we add more information to the recommenda-
tion system, so that it understands what an item is, and what
a user is? Instead of representing Chamber of Secrets as item
i, we can represent it using two features, "Young Adult" and

"Fantasy." Similarly, we can represent Bob using "Male" and
"Age 30." The interaction matrix no longer contains interac-
tions between users and items, but interactions between user
features (in each row) and item features (in each column).17
With this new interaction matrix, we can proceed to use ei-
ther collaborative filtering or matrix factorization to obtain

16 See http://people.ee.duke.edu/\~lcarin/MatrixFactorization.pdf.

17 These features can be fitted numerically (using regression, for

example) or manually encoded.

How Do Recommendations Work? 47

recommendations. Since the resulting recommendations are
for features, they need to be converted to item recommenda-
tions via mapping and aggregation.

The hybrid system alleviates both the cold start and spar-
sity problems. When a new user or item enters the system, it
is no longer "new" because it can be represented by the exist-
ing user or item features in the recommendation system. In
addition, because many items now map onto a common set
of item features (and similarly, many users onto a set of corre-
sponding user features), the interaction matrix is more dense
and results are explainable.

3.1.3.2 Adding Heuristic Combinations of Things
It’s important to note that by adding metadata to the un-

derlying recommendations, additional information can be
considered in the prediction after the fact.

A common way to do this is by calculating a secondary
score for the metadata that is desired and multiplying that
by the score calculated with the recommendation system. For
example, if we wish to constrain recommendation results to
be geographically close to the user, we can calculate a score
describing how close a result is to the chosen location. How-
ever, it is important to make a motivated decision about how
this score is normalized.

If, for example, we normalize all the geographic scores
from [0, 1], then geography can never increase the value for a
particular item. So, if we are showing these scores to the user
we must account for the fact that this geography score will, by
definition, lower the values for all items. On the other hand,
if we only require the score to be positive, then we must be

48 How Do Recommendations Work?

aware that sometimes we will recommend suboptimal items
because they are close to the chosen location. This would
result in recommending a restaurant that is geographically
close to a user, regardless of whether or not they would like it.

Generally, the solution to this is training a recommenda-
tion system without knowledge of geography, or whatever the
secondary metadata is, and then fitting a separate model to
learn how to combine the scores.

3.1.4 Neural Network Approaches
Deep learning’s success when applied to visual and speech

recognition problems has motivated practitioners and re-
searchers to use neural networks for recommendations.18
Neural networks are promising because they can not only
handle historical interaction data, but easily process unstruc-
tured information such as text, images, audio, or even things
as abstract as how an object moves. In addition, neural net-
works are powerful at doing their own feature engineering in
order to figure out for themselves what is important or not
within that data. This, coupled with their nonlinearity, helps
them uncover the relationships between objects.

In practice, these networks can be used as standalone
systems or combined with traditional techniques to achieve
better performance. For example, we can use embeddings
to create deep representations for objects which can then be
used with a k-NN algorithm to find the k best recommenda-
tions (3.1.1.1 k-Nearest Neighbor (k-NN)). Alternatively, ses-

18 See for example https://arxiv.org/abs/1707.07435 and http://

dlrs-workshop.org.

How Do Recommendations Work? 49

sion-based networks using recurrent neural networks can
directly predict the next object that should be recommended
without the use of auxiliary algorithms.

3.1.4.1 Embeddings
Embeddings and matrix factorization share the point

of view that we should enrich the user-item representa-
tions we use in our recommendation systems with meta-
data.19 However, one problem with matrix factorization
methods is that they generally can only extract global
structure from the problem. For books, that would mean
they can extract some sense of genre, but won’t under-
stand how books within the same genre differ and interact.

Neighborhood models are most effective at detecting
very localized relationships. They rely on a few signifi-
cant neighborhood relations, often ignoring the vast ma-
jority of ratings by a user. Consequently, these methods
are unable to capture the totality of weak signals encom-
passed in all of a user’s ratings. Latent factor models are
generally effective at estimating overall structure that re-
lates simultaneously to most or all items. However, these
models are poor at detecting strong associations among a
small set of closely related items.20

— Yehuda Koren, 2009

19 See https://papers.nips.cc/paper/5477-neural-word-embed

ding-as-implicit-matrix-factorization.

20 From http://www.academia.edu/download/34418810/Recom

mender-Systems-Netflix.pdf.

48 How Do Recommendations Work?

aware that sometimes we will recommend suboptimal items
because they are close to the chosen location. This would
result in recommending a restaurant that is geographically
close to a user, regardless of whether or not they would like it.

Generally, the solution to this is training a recommenda-
tion system without knowledge of geography, or whatever the
secondary metadata is, and then fitting a separate model to
learn how to combine the scores.

3.1.4 Neural Network Approaches
Deep learning’s success when applied to visual and speech

recognition problems has motivated practitioners and re-
searchers to use neural networks for recommendations.18
Neural networks are promising because they can not only
handle historical interaction data, but easily process unstruc-
tured information such as text, images, audio, or even things
as abstract as how an object moves. In addition, neural net-
works are powerful at doing their own feature engineering in
order to figure out for themselves what is important or not
within that data. This, coupled with their nonlinearity, helps
them uncover the relationships between objects.

In practice, these networks can be used as standalone
systems or combined with traditional techniques to achieve
better performance. For example, we can use embeddings
to create deep representations for objects which can then be
used with a k-NN algorithm to find the k best recommenda-
tions (3.1.1.1 k-Nearest Neighbor (k-NN)). Alternatively, ses-

18 See for example https://arxiv.org/abs/1707.07435 and http://

dlrs-workshop.org.

How Do Recommendations Work? 49

sion-based networks using recurrent neural networks can
directly predict the next object that should be recommended
without the use of auxiliary algorithms.

3.1.4.1 Embeddings
Embeddings and matrix factorization share the point

of view that we should enrich the user-item representa-
tions we use in our recommendation systems with meta-
data.19 However, one problem with matrix factorization
methods is that they generally can only extract global
structure from the problem. For books, that would mean
they can extract some sense of genre, but won’t under-
stand how books within the same genre differ and interact.

Neighborhood models are most effective at detecting
very localized relationships. They rely on a few signifi-
cant neighborhood relations, often ignoring the vast ma-
jority of ratings by a user. Consequently, these methods
are unable to capture the totality of weak signals encom-
passed in all of a user’s ratings. Latent factor models are
generally effective at estimating overall structure that re-
lates simultaneously to most or all items. However, these
models are poor at detecting strong associations among a
small set of closely related items.20

— Yehuda Koren, 2009

19 See https://papers.nips.cc/paper/5477-neural-word-embed

ding-as-implicit-matrix-factorization.

20 From http://www.academia.edu/download/34418810/Recom

mender-Systems-Netflix.pdf.

50 How Do Recommendations Work?

This is where modern embedding models thrive: they are
able to understand not only global structure (i.e., how vari-
ous genres compare to one another) but also structure on a
smaller scale (i.e., how various books within a genre compare
to one another). Furthermore, the way they do this is consis-
tent at all levels. Because of this, we are able to think of the
space that they create as a semantic space — it encodes deep
features about the objects in a feature-rich way that can be
used to exploit their fundamental properties.

Turning back to our work in FF04 as an example, the word
embeddings we discuss there create a space where all words
relating to capitals of countries are in the same region as one
another, and this cluster is close to the cluster that contains
all of the country names. At the same time, the path to get

Washington, D.C. - USA + France = Paris

Washington,
D.C.

USA

Germany

France

Berlin

Paris

figure 3.9 Word2vec encodes words as vectors with local and

global structure, allowing word analogies to be solved through

arithmetic.

How Do Recommendations Work? 51

from the point for "United States" to the point for "Washing-
ton, DC" is similar to the one from "France" to "Paris" and, to
some degree, from "New York" to "Albany." This is the sort of
rich structure we expect from a semantic embedding space.

In that report, we also go through how to train such a se-
mantic embedding space on text. The training procedure for
recommendations is quite similar. We can think of each word
in our text model as corresponding to an object from our rec-
ommendations dataset, and each sentence as corresponding
to the set of objects a single user has interacted with. Each ob-
ject, however, is represented by some description of it. As a
result, each user is represented by a sequence of descriptions.

This is where things start changing, because we are using a
multimodal model instead of a unimodal model. Our two mo-
dalities are items and users, and they can both be represented

Alice

Python
101

Javascript
101

Chamber
of Secrets

Description
of Python
101

Description
of Javascript
101

Description
of Chamber
of Secrets

User

User as sequence
of liked items

User as sequence
of desciptions
of liked items

figure 3.10 For recommendations, a user can be embedded as a

sequence of descriptions of items they interacted with.

50 How Do Recommendations Work?

This is where modern embedding models thrive: they are
able to understand not only global structure (i.e., how vari-
ous genres compare to one another) but also structure on a
smaller scale (i.e., how various books within a genre compare
to one another). Furthermore, the way they do this is consis-
tent at all levels. Because of this, we are able to think of the
space that they create as a semantic space — it encodes deep
features about the objects in a feature-rich way that can be
used to exploit their fundamental properties.

Turning back to our work in FF04 as an example, the word
embeddings we discuss there create a space where all words
relating to capitals of countries are in the same region as one
another, and this cluster is close to the cluster that contains
all of the country names. At the same time, the path to get

Washington, D.C. - USA + France = Paris

Washington,
D.C.

USA

Germany

France

Berlin

Paris

figure 3.9 Word2vec encodes words as vectors with local and

global structure, allowing word analogies to be solved through

arithmetic.

How Do Recommendations Work? 51

from the point for "United States" to the point for "Washing-
ton, DC" is similar to the one from "France" to "Paris" and, to
some degree, from "New York" to "Albany." This is the sort of
rich structure we expect from a semantic embedding space.

In that report, we also go through how to train such a se-
mantic embedding space on text. The training procedure for
recommendations is quite similar. We can think of each word
in our text model as corresponding to an object from our rec-
ommendations dataset, and each sentence as corresponding
to the set of objects a single user has interacted with. Each ob-
ject, however, is represented by some description of it. As a
result, each user is represented by a sequence of descriptions.

This is where things start changing, because we are using a
multimodal model instead of a unimodal model. Our two mo-
dalities are items and users, and they can both be represented

Alice

Python
101

Javascript
101

Chamber
of Secrets

Description
of Python
101

Description
of Javascript
101

Description
of Chamber
of Secrets

User

User as sequence
of liked items

User as sequence
of desciptions
of liked items

figure 3.10 For recommendations, a user can be embedded as a

sequence of descriptions of items they interacted with.

52 How Do Recommendations Work?

in different ways using different types of data.21 In order to do
this, we pick a user representation, remove any reference to a
random selection of objects in that user’s history, and create
a single encoding for that user. Separately, we encode one of

21 In the prototype we discuss in 4 Prototype, we represent a book

by its summary and a user by the sequence of books, each represent-

ed by its own summary, that the user has reviewed. This choice was

made for simplicity, and in reality the representations used for both

objects can be completely different.

Item 1
4 stars

Item 2
3 stars

Item 1
4 stars

Item 2
3 stars

Item 3
5 stars

Item 4
2 stars

Item 5
1 star

Item 20
?

Item 5
?

Item 3
5 stars

Item 4
2 stars

Item 1
4 stars

Item 4
?

Item 5
1 star

Item 1
4 stars

Item 3
5 stars

User embedding

Training with user embedding

,

,

,

Input Output

1 star

2 stars

0 stars

figure 3.11 Example of how a sequence of user interactions is

turned into multiple training samples for our multi-modal model.

How Do Recommendations Work? 53

the items that we removed. The model is rewarded if the user
encoding and the item encoding are close to one another. At
the same time, we also randomly sample items that user has
never interacted with and penalize the model if the user-se-
quence encoding and the random-item encoding are close to
one another.

With these embeddings fully trained, we are able to make
recommendations using standard k-nearest neighbor ap-
proaches by simply encoding a user’s history and finding
items that encode to similar values. Another benefit of a sys-
tem like this is that it is truly flexible and allows all sorts of
additional usages. Items or users can be added or subtracted
in order to allow for better exploration of the catalogue, and
users can be recommended to users based on similar prefer-
ences. The system provides a general way of understanding
how users and items interact with one another in a consistent
way.

Furthermore, the system is able to find deep features with-
in the objects and embed them, purely based on their raw
data. The cold start problem is no longer an issue, because the
only input for the recommendation system is the metadata or
description of the item. This method is powerful enough to be
used as a recommendation system whose input is raw audio
signals!22

3.1.4.2 Session-Based Methods
Session-based deep learning methods try to use neural

networks to help in cases when users don’t necessarily in-

22 See https://arxiv.org/abs/1706.09739.

52 How Do Recommendations Work?

in different ways using different types of data.21 In order to do
this, we pick a user representation, remove any reference to a
random selection of objects in that user’s history, and create
a single encoding for that user. Separately, we encode one of

21 In the prototype we discuss in 4 Prototype, we represent a book

by its summary and a user by the sequence of books, each represent-

ed by its own summary, that the user has reviewed. This choice was

made for simplicity, and in reality the representations used for both

objects can be completely different.

Item 1
4 stars

Item 2
3 stars

Item 1
4 stars

Item 2
3 stars

Item 3
5 stars

Item 4
2 stars

Item 5
1 star

Item 20
?

Item 5
?

Item 3
5 stars

Item 4
2 stars

Item 1
4 stars

Item 4
?

Item 5
1 star

Item 1
4 stars

Item 3
5 stars

User embedding

Training with user embedding

,

,

,

Input Output

1 star

2 stars

0 stars

figure 3.11 Example of how a sequence of user interactions is

turned into multiple training samples for our multi-modal model.

How Do Recommendations Work? 53

the items that we removed. The model is rewarded if the user
encoding and the item encoding are close to one another. At
the same time, we also randomly sample items that user has
never interacted with and penalize the model if the user-se-
quence encoding and the random-item encoding are close to
one another.

With these embeddings fully trained, we are able to make
recommendations using standard k-nearest neighbor ap-
proaches by simply encoding a user’s history and finding
items that encode to similar values. Another benefit of a sys-
tem like this is that it is truly flexible and allows all sorts of
additional usages. Items or users can be added or subtracted
in order to allow for better exploration of the catalogue, and
users can be recommended to users based on similar prefer-
ences. The system provides a general way of understanding
how users and items interact with one another in a consistent
way.

Furthermore, the system is able to find deep features with-
in the objects and embed them, purely based on their raw
data. The cold start problem is no longer an issue, because the
only input for the recommendation system is the metadata or
description of the item. This method is powerful enough to be
used as a recommendation system whose input is raw audio
signals!22

3.1.4.2 Session-Based Methods
Session-based deep learning methods try to use neural

networks to help in cases when users don’t necessarily in-

22 See https://arxiv.org/abs/1706.09739.

54 How Do Recommendations Work?

teract with many items. For example, if I have a large e-com-
merce website and dozens of interactions for each user in my
dataset, matrix factorization may do a good job of extracting
some relevant features about their preferences. However, if I
have a small e-commerce website without much history for
my users, matrix factorization simply won’t be able to extract
enough information from my dataset to be useful.

Another appeal of session-based methods is how some
variants can take into account the temporal nature of ses-
sion-based data. For example, they can see that a user is first
reading a general algorithms book, then a book specifically
on neural networks, and use that trajectory to recommend a
good next step.

3.2 What This All Means
Clearly, the scope of recommendation algorithms is quite

wide; however, they all share a common scheme: find some
representation for the objects you are recommending and
then, to make a recommendation for a given object, find
objects with a similar representation. While the methods
described here may seem to vary greatly, from the simplici-
ty of collaborative filtering to the complexity of multimodal
embeddings, they all follow this same pattern; the question is
which one can make a robust enough representation for your
data.

It’s important to be aware of this breadth because at this
point in the field of recommendations there is no way to know
just by looking at your data which method will return the best
results. Therefore, when building any recommendation sys-
tem, it is necessary to start with the simplest approach and

How Do Recommendations Work? 55

work your way up in complexity, testing at every step to make
sure that the additional complexity is in fact helping your sys-
tem better understand your data. In 4.2 Model, we discuss the
multimodal model we chose, how we evaluated it, and how
we compared it to the simpler approaches.

54 How Do Recommendations Work?

teract with many items. For example, if I have a large e-com-
merce website and dozens of interactions for each user in my
dataset, matrix factorization may do a good job of extracting
some relevant features about their preferences. However, if I
have a small e-commerce website without much history for
my users, matrix factorization simply won’t be able to extract
enough information from my dataset to be useful.

Another appeal of session-based methods is how some
variants can take into account the temporal nature of ses-
sion-based data. For example, they can see that a user is first
reading a general algorithms book, then a book specifically
on neural networks, and use that trajectory to recommend a
good next step.

3.2 What This All Means
Clearly, the scope of recommendation algorithms is quite

wide; however, they all share a common scheme: find some
representation for the objects you are recommending and
then, to make a recommendation for a given object, find
objects with a similar representation. While the methods
described here may seem to vary greatly, from the simplici-
ty of collaborative filtering to the complexity of multimodal
embeddings, they all follow this same pattern; the question is
which one can make a robust enough representation for your
data.

It’s important to be aware of this breadth because at this
point in the field of recommendations there is no way to know
just by looking at your data which method will return the best
results. Therefore, when building any recommendation sys-
tem, it is necessary to start with the simplest approach and

How Do Recommendations Work? 55

work your way up in complexity, testing at every step to make
sure that the additional complexity is in fact helping your sys-
tem better understand your data. In 4.2 Model, we discuss the
multimodal model we chose, how we evaluated it, and how
we compared it to the simpler approaches.

56 How Do Recommendations Work? Prototype 57

chapter 4
Prototype

4.1 Data
For our prototype, we decided to use the Amazon book

recommendations dataset.1 This dataset contains 41.13 mil-
lion reviews, where every book/user has at least 5 reviews
associated with it. After heavy filtering, we reduced the set
to 254,932 books reviewed by 603,668 users. This filtering

1 See http://jmcauley.ucsd.edu/data/amazon/.

figure 4.1 The values for the ratings are skewed towards 5 stars.

Histogram of review stars

1 2 3 4 5

10

20

30

Review stars
(i

n
 1

0
0

,0
0

0
s)

56 How Do Recommendations Work? Prototype 57

chapter 4
Prototype

4.1 Data
For our prototype, we decided to use the Amazon book

recommendations dataset.1 This dataset contains 41.13 mil-
lion reviews, where every book/user has at least 5 reviews
associated with it. After heavy filtering, we reduced the set
to 254,932 books reviewed by 603,668 users. This filtering

1 See http://jmcauley.ucsd.edu/data/amazon/.

figure 4.1 The values for the ratings are skewed towards 5 stars.

Histogram of review stars

1 2 3 4 5

10

20

30

Review stars

(i
n

 1
0

0
,0

0
0

s)

58 Prototype

was necessary because of the abysmal data quality: most us-
ers only give 5-star ratings and the number of ratings users
provide follows a power law (meaning there are half as many
4-star ratings as 5 stars, half as many 3-star ratings as 4 stars,
and so on).

Another pain point with the dataset is the amount of noise
in the book summaries. Many of the books have incredibly
short and noninformative summaries. Another large portion
of the books have very long summaries that consist mainly of
quotes from critics or author biographies. In addition, a ma-
jority of the books' summaries have encoding errors which
result in meaningless characters being spread throughout
the text. Our favorite example of these errors is one book

101

103

105

10000 2000 3000

Number of reviews by user

Histogram of the number of reviews per user

figure 4.2 A small group of users writes the majority of the

reviews.

Prototype 59

summary which is quite descriptive, but doesn’t contain any
spaces or punctuation!

As a result, our model is an example of working in an
extreme situation where there is no quality control over the
data. In most applications, application designers can remedy
this lack of quality because of their control over the environ-
ment. In this case, however, that was not possible.

4.2 Model
One of the hardships in creating a model to deal with user

interactions through book summaries is the number of se-
quences we need to deal with. First, there is the sequence of
words within the summary of one book. We wanted to model

101

103

105

10000 3000 5000

Length of book summaries (words)

Histogram of book summary lengths

figure 4.3 Many books have short and uninformative

summaries.

58 Prototype

was necessary because of the abysmal data quality: most us-
ers only give 5-star ratings and the number of ratings users
provide follows a power law (meaning there are half as many
4-star ratings as 5 stars, half as many 3-star ratings as 4 stars,
and so on).

Another pain point with the dataset is the amount of noise
in the book summaries. Many of the books have incredibly
short and noninformative summaries. Another large portion
of the books have very long summaries that consist mainly of
quotes from critics or author biographies. In addition, a ma-
jority of the books' summaries have encoding errors which
result in meaningless characters being spread throughout
the text. Our favorite example of these errors is one book

101

103

105

10000 2000 3000

Number of reviews by user

Histogram of the number of reviews per user

figure 4.2 A small group of users writes the majority of the

reviews.

Prototype 59

summary which is quite descriptive, but doesn’t contain any
spaces or punctuation!

As a result, our model is an example of working in an
extreme situation where there is no quality control over the
data. In most applications, application designers can remedy
this lack of quality because of their control over the environ-
ment. In this case, however, that was not possible.

4.2 Model
One of the hardships in creating a model to deal with user

interactions through book summaries is the number of se-
quences we need to deal with. First, there is the sequence of
words within the summary of one book. We wanted to model

101

103

105

10000 3000 5000

Length of book summaries (words)

Histogram of book summary lengths

figure 4.3 Many books have short and uninformative

summaries.

60 Prototype

this as a sequence since the summaries have variable length
(we initially hoped to avoid truncating them, but in the end
this was unavoidable, as we discuss in 4.2.3 Failures). Fur-
thermore, we wanted to take advantage of the word order in
the summaries. In addition to this sequence, there is also the
user history, which is represented as a sequence of books that
a user has interacted with; this again is a variable-length se-
quence where order could potentially be relevant. Since we
represent each book with a sequence of words, this means
that the user history is a sequence of sequences.

Luckily, we can use recurrent neural networks, discussed
in FF04, to learn from this sequential data without losing
potentially valuable temporal information such as word or
book order. In addition, we’re able to use the modular nature
of neural networks to reuse and share information between
parts of the model. That is to say, the segment of the model
that learns how to understand a particular book summary can
also be reused to understand the books within a user’s history.

The first example of this modular structure is with the

OutputInput Masking

64 words each as
300 element vector per word

GRU

Combine

64 words
300 element vector per word

Attention

figure 4.4 The structure of the attention mechanism in the

model.

Prototype 61

attention mechanism we use to focus the model. When-
ever we input a book description, represented as a sequence
of word2vec vectors, we first filter that data through a set of
layers that reweights the input so that the model can learn
to ignore certain concepts or focus on others. This attention
model is not a global feature — which is to say, it doesn’t learn
to always downweight a particular word. Instead, it learns to
weight words based on their context.

This attention mechanism has two benefits. First, it focus-
es the neural network so that it can concentrate on the data
that is important for the particular input it is considering,
effectively reducing noise. Second, it helps the users under-
stand why a certain prediction is made. By introspecting in-
side the model when being shown a particular example, we
can see which words it chooses to look at and which it ignores,
giving us information that can be shown to the user. These
sorts of attention mechanisms are used in many places where
understanding why a neural network makes a decision is
important, and this is seen as the leading method in making
neural networks interpretable.2

Having now a sense of which parts of the book description
were important, we wanted to reduce this large sequence into
something more manageable. For this, we created another
submodule for our larger model that takes this reweighted se-
quence, feeds it through several layers of recurrent networks,
and outputs a fixed-length vector (which was chosen to be 256
elements in length after some experimentation).

2 See "Interpretability" (FF06), available at http://fastforwardlabs.

com/research/FF06, for more on this subject.

60 Prototype

this as a sequence since the summaries have variable length
(we initially hoped to avoid truncating them, but in the end
this was unavoidable, as we discuss in 4.2.3 Failures). Fur-
thermore, we wanted to take advantage of the word order in
the summaries. In addition to this sequence, there is also the
user history, which is represented as a sequence of books that
a user has interacted with; this again is a variable-length se-
quence where order could potentially be relevant. Since we
represent each book with a sequence of words, this means
that the user history is a sequence of sequences.

Luckily, we can use recurrent neural networks, discussed
in FF04, to learn from this sequential data without losing
potentially valuable temporal information such as word or
book order. In addition, we’re able to use the modular nature
of neural networks to reuse and share information between
parts of the model. That is to say, the segment of the model
that learns how to understand a particular book summary can
also be reused to understand the books within a user’s history.

The first example of this modular structure is with the

OutputInput Masking

64 words each as
300 element vector per word

GRU

Combine

64 words
300 element vector per word

Attention

figure 4.4 The structure of the attention mechanism in the

model.

Prototype 61

attention mechanism we use to focus the model. When-
ever we input a book description, represented as a sequence
of word2vec vectors, we first filter that data through a set of
layers that reweights the input so that the model can learn
to ignore certain concepts or focus on others. This attention
model is not a global feature — which is to say, it doesn’t learn
to always downweight a particular word. Instead, it learns to
weight words based on their context.

This attention mechanism has two benefits. First, it focus-
es the neural network so that it can concentrate on the data
that is important for the particular input it is considering,
effectively reducing noise. Second, it helps the users under-
stand why a certain prediction is made. By introspecting in-
side the model when being shown a particular example, we
can see which words it chooses to look at and which it ignores,
giving us information that can be shown to the user. These
sorts of attention mechanisms are used in many places where
understanding why a neural network makes a decision is
important, and this is seen as the leading method in making
neural networks interpretable.2

Having now a sense of which parts of the book description
were important, we wanted to reduce this large sequence into
something more manageable. For this, we created another
submodule for our larger model that takes this reweighted se-
quence, feeds it through several layers of recurrent networks,
and outputs a fixed-length vector (which was chosen to be 256
elements in length after some experimentation).

2 See "Interpretability" (FF06), available at http://fastforwardlabs.

com/research/FF06, for more on this subject.

62 Prototype

At this stage, we had a way of turning a book summary of
arbitrary length into a fixed-sized vector that encodes its con-
tent. This would have been enough for a unimodal model that
simply looked at how books are related to other books, but we
wanted to incorporate user histories, or sequences of books
with ratings associated with them. Our solution was to take
the embedding for a user (which consists of multiple book
embeddings, one for each book they’ve reviewed), multiply it
with the ratings that user has given the books they’ve read,
and feed it into another recurrent network that is meant to
find a single vector representing the user. This resulting vec-
tor is the same size as the vector for a single book.

We finally have all the working pieces we need. We have
a 256 element vector embedding for a book, and we also can
create an embedding of a user’s history into a vector embed-
ding with the same size. All told, this model takes 1,610,652
parameters, which is fairly modest given the complexity of
the operations being performed. The model is now trained

figure 4.5 The description is transformed into a manageable

fixed-length vector.

Output

Input Attention

64 words
300 element vector per word

Masking GRU GRU

256 element vector
Embedding

Prototype 63

so that the dot product between these two embeddings is as
close to that user’s rating for the book as possible.

This procedure not only gives us a way to train the model
using the available book ratings from the dataset, but also forc-
es the vector embeddings of similar books/users to be close to

Masking

Masking

GRU

Output

Predicted rating
1 element vector

Input

History ratings:
5 ratings, 1 element vector per rating

Input

History texts:
5 texts, 64 words per text, 300 element vector per word

Input

Text we want to predict rating for
64 words, 300 element vector per word

Rating
Attention

Model

Embedding
for each

text
Combine

5 texts,
256 element vector per text

Embedding

256 element vector

GRU

GRUMasking

Dot
Product

figure 4.6 The full multi-modal model.

62 Prototype

At this stage, we had a way of turning a book summary of
arbitrary length into a fixed-sized vector that encodes its con-
tent. This would have been enough for a unimodal model that
simply looked at how books are related to other books, but we
wanted to incorporate user histories, or sequences of books
with ratings associated with them. Our solution was to take
the embedding for a user (which consists of multiple book
embeddings, one for each book they’ve reviewed), multiply it
with the ratings that user has given the books they’ve read,
and feed it into another recurrent network that is meant to
find a single vector representing the user. This resulting vec-
tor is the same size as the vector for a single book.

We finally have all the working pieces we need. We have
a 256 element vector embedding for a book, and we also can
create an embedding of a user’s history into a vector embed-
ding with the same size. All told, this model takes 1,610,652
parameters, which is fairly modest given the complexity of
the operations being performed. The model is now trained

figure 4.5 The description is transformed into a manageable

fixed-length vector.

Output

Input Attention

64 words
300 element vector per word

Masking GRU GRU

256 element vector
Embedding

Prototype 63

so that the dot product between these two embeddings is as
close to that user’s rating for the book as possible.

This procedure not only gives us a way to train the model
using the available book ratings from the dataset, but also forc-
es the vector embeddings of similar books/users to be close to

Masking

Masking

GRU

Output

Predicted rating
1 element vector

Input

History ratings:
5 ratings, 1 element vector per rating

Input

History texts:
5 texts, 64 words per text, 300 element vector per word

Input

Text we want to predict rating for
64 words, 300 element vector per word

Rating
Attention

Model

Embedding
for each

text
Combine

5 texts,
256 element vector per text

Embedding

256 element vector

GRU

GRUMasking

Dot
Product

figure 4.6 The full multi-modal model.

64 Prototype

each other. As a result, when we want to perform recommen-
dations on books/users in the future, we simply need to do a
k-nearest neighbor search on the book/user embeddings, the
values of which can be precalculated. This is similar to what is
done for hybrid collaborative filtering (02-hybrid), but we are
using a much more robust model than matrix factorization.

4.2.1 Training
We chose to use a skip-gram-like approach, described in

FF04, to train our model. This means we randomly sample a
book and rating from the user’s history to use as the target
of the model and then take a random number of the remain-
ing books to represent the history. This is done many times
for each user, so we are able to augment each user’s history
with different permutations. Furthermore, we randomly sam-
ple books that the user has never interacted with in order to
generate negative samples. As described in 2.2.3 Missing Data
and Evaluation, this sort of approach can be problematic, but
in the case where we have no access to the users generating
the data it’s the only approach possible.

In order to deal with performance issues, all of the sum-
maries in all of the skip-grams, in their word2vec format,
were cached and saved to an hdf5 file.3 The resulting two files
are 821 GB (2,257,588 samples) for training and 35 GB (98,414
samples) for validation. Even with this precaching, each ep-
och took 1.5 hours (with an average of 58 epochs required)
to converge. However, without caching it would have taken

3 Using the h5py package; see http://h5py.org.

Prototype 65

~6 hours per epoch, and without a GPU (but with caching) it
would have taken 117 hours per epoch!4

These long training times show the necessity of having
multiple GPUs when developing these models. The model
exploration and hyperparameter tuning phases both require
training many models and seeing which perform best on the
data. Each one of these models can be trained independently
of the others and training can thus be parallelized simply by
launching more training operations. So, having eight GPUs
means that the process can happen eight times faster. One of
the major limitations to our model was the time constraint
in this exploration phase, which could have been remedied
by having more GPUs available. AWS’s p2.*xlarge instances,
Paperspace’s dedicated GPU instances,5 and other cloud com-
puting services help tremendously in this area.

4.2.2 Evaluation
In order to evaluate our model, we chose to look at the root-

mean-squared error (RMSE) between our predicted rating that
a user would give a book and the actual rating. Furthermore,
we made sure that there was no leakage between our training
set and our testing set: no users or books are shared between
the two sets of data. While this is the correct way to separate
out the training and testing data, it also greatly reduces the
sizes of each dataset. Results from our model comparison

4 Our tests were done with an NVIDIA Tesla Titanium and an Intel

Xeon CPU E5-2620v3.

5 Paperspace is a cheap by-the-hour cloud provider that provides

the newest NVIDIA GPU, the Volta.

64 Prototype

each other. As a result, when we want to perform recommen-
dations on books/users in the future, we simply need to do a
k-nearest neighbor search on the book/user embeddings, the
values of which can be precalculated. This is similar to what is
done for hybrid collaborative filtering (02-hybrid), but we are
using a much more robust model than matrix factorization.

4.2.1 Training
We chose to use a skip-gram-like approach, described in

FF04, to train our model. This means we randomly sample a
book and rating from the user’s history to use as the target
of the model and then take a random number of the remain-
ing books to represent the history. This is done many times
for each user, so we are able to augment each user’s history
with different permutations. Furthermore, we randomly sam-
ple books that the user has never interacted with in order to
generate negative samples. As described in 2.2.3 Missing Data
and Evaluation, this sort of approach can be problematic, but
in the case where we have no access to the users generating
the data it’s the only approach possible.

In order to deal with performance issues, all of the sum-
maries in all of the skip-grams, in their word2vec format,
were cached and saved to an hdf5 file.3 The resulting two files
are 821 GB (2,257,588 samples) for training and 35 GB (98,414
samples) for validation. Even with this precaching, each ep-
och took 1.5 hours (with an average of 58 epochs required)
to converge. However, without caching it would have taken

3 Using the h5py package; see http://h5py.org.

Prototype 65

~6 hours per epoch, and without a GPU (but with caching) it
would have taken 117 hours per epoch!4

These long training times show the necessity of having
multiple GPUs when developing these models. The model
exploration and hyperparameter tuning phases both require
training many models and seeing which perform best on the
data. Each one of these models can be trained independently
of the others and training can thus be parallelized simply by
launching more training operations. So, having eight GPUs
means that the process can happen eight times faster. One of
the major limitations to our model was the time constraint
in this exploration phase, which could have been remedied
by having more GPUs available. AWS’s p2.*xlarge instances,
Paperspace’s dedicated GPU instances,5 and other cloud com-
puting services help tremendously in this area.

4.2.2 Evaluation
In order to evaluate our model, we chose to look at the root-

mean-squared error (RMSE) between our predicted rating that
a user would give a book and the actual rating. Furthermore,
we made sure that there was no leakage between our training
set and our testing set: no users or books are shared between
the two sets of data. While this is the correct way to separate
out the training and testing data, it also greatly reduces the
sizes of each dataset. Results from our model comparison

4 Our tests were done with an NVIDIA Tesla Titanium and an Intel

Xeon CPU E5-2620v3.

5 Paperspace is a cheap by-the-hour cloud provider that provides

the newest NVIDIA GPU, the Volta.

66 Prototype

between our bi-modal model and other classic approaches to
recommendations are shown in the table 4.1.

In comparison with classic methods, our Bi-Modal model
performed quite well! An RMSE of 0.09 means that, on av-
erage, our prediction for a rating is off by 0.04 stars (where
books are rated from 1-5 stars). On the other hand, because of
class imbalances, a random prediction of ratings would be off
by 0.722 stars.

One feature we see in the results is how much better the
recommendation algorithms that somehow use properties
of the items are, as opposed to those that use just an ID. For
example, using Spotlight’s matrix factorization on only book
IDs results in a worse-than-random result; however, factoring
in the subjects of the books gives us the best results from the
classic methods.

This also gives us an indication as to why the Bi-Mod-
al model has such a jump in performance compared to the
other models. The number of books being considered in the
catalogue is quite large and the number of interactions quite
small in comparison. With only the book IDs, there simply is

table 4.1 Evaluation Results. Scores are normalized between 0

and 1.

Prototype 67

not enough interaction information to find common trends.
By augmenting this data with the book subject, we are able to
leverage information we know about genres in order to make
inferences about books that may not have been interacted with
that much. In the extreme case, our Bi-Modal model makes
use of the summary, a much richer set of metadata than just
the subject, allowing us to extract nuances that genre simply
can’t capture (for example, the similarity between computer
books and certain types of sci-fi).

4.2.3 Failures
While the final model we created for the prototype did well

in comparison to the classic methods (table 4.1), there were
many things that didn’t go as expected. One of the problems
stemmed from the results for user embeddings.

In our description of the overall model structure, we
planned to take advantage of the sequence of books a user
reviewed to create an embedding for users. As explained be-
fore, the benefit would be that both users and books would be
embedded into a similar space and distances between them
would be meaningful. However, while book-to-book distanc-
es and user-to-user comparisons performed very well, user-to-
book comparisons did not. The distances between books and
users were always large, indicating that the model learned to
create structure for books separately from the structure for
users (i.e., books were all in one cohesive cluster and users
were in another).

The most compelling explanation for this is that the mod-
el simply did not converge fully. Neural networks tend to con-
verge from the bottom up (layers near the input layer converge

66 Prototype

between our bi-modal model and other classic approaches to
recommendations are shown in the table 4.1.

In comparison with classic methods, our Bi-Modal model
performed quite well! An RMSE of 0.09 means that, on av-
erage, our prediction for a rating is off by 0.04 stars (where
books are rated from 1-5 stars). On the other hand, because of
class imbalances, a random prediction of ratings would be off
by 0.722 stars.

One feature we see in the results is how much better the
recommendation algorithms that somehow use properties
of the items are, as opposed to those that use just an ID. For
example, using Spotlight’s matrix factorization on only book
IDs results in a worse-than-random result; however, factoring
in the subjects of the books gives us the best results from the
classic methods.

This also gives us an indication as to why the Bi-Mod-
al model has such a jump in performance compared to the
other models. The number of books being considered in the
catalogue is quite large and the number of interactions quite
small in comparison. With only the book IDs, there simply is

table 4.1 Evaluation Results. Scores are normalized between 0

and 1.

Prototype 67

not enough interaction information to find common trends.
By augmenting this data with the book subject, we are able to
leverage information we know about genres in order to make
inferences about books that may not have been interacted with
that much. In the extreme case, our Bi-Modal model makes
use of the summary, a much richer set of metadata than just
the subject, allowing us to extract nuances that genre simply
can’t capture (for example, the similarity between computer
books and certain types of sci-fi).

4.2.3 Failures
While the final model we created for the prototype did well

in comparison to the classic methods (table 4.1), there were
many things that didn’t go as expected. One of the problems
stemmed from the results for user embeddings.

In our description of the overall model structure, we
planned to take advantage of the sequence of books a user
reviewed to create an embedding for users. As explained be-
fore, the benefit would be that both users and books would be
embedded into a similar space and distances between them
would be meaningful. However, while book-to-book distanc-
es and user-to-user comparisons performed very well, user-to-
book comparisons did not. The distances between books and
users were always large, indicating that the model learned to
create structure for books separately from the structure for
users (i.e., books were all in one cohesive cluster and users
were in another).

The most compelling explanation for this is that the mod-
el simply did not converge fully. Neural networks tend to con-
verge from the bottom up (layers near the input layer converge

68 Prototype

sooner), and the book-to-book as well as the user-to-user em-
beddings show signs of individually having converged in the
final model (this was seen by observing the distances between
the final embedding values; user-user embeddings had close
proximity as did item-item, however user-item embeddings
remained far away from each other). More data could help
with this, or simply a variation on the model structure we
chose. However, because of the time necessary to train each
new variation, we weren’t able to continue our model search.

Another general limitation of our model is that we had to
truncate the summaries of books to 64 words, a value chosen
for the resource implications of the training procedure and
the observation that many summaries devolve into quotes
and awards after this many words. This truncation happens
after we do some filtering, but it still requires us to throw away
a lot of potentially useful information (further contributing
to our problems with convergence). This filtering was a nec-
essary way to speed up model training because of our limited
time frame. Generally, filtering tricks like this are used to ac-
celerate training for a model survey, and then the full dataset
is used to train the final model. However, in our case training
the final model with the full dataset would have been too slow
to be useful. By truncating the data we were able to precache
all of the word-vector inputs to the model and store them to
an hdf5 file, a format which Keras can read quickly; moving to
the full dataset would have required us to compute these word
vectors on the fly, further slowing down the model.

Prototype 69

4.3 Product: Deep Bargain Book Shop
The simplest interface for a recommendation system is a

list of recommendations. For our prototype, we started with a
list, but quickly realized we needed to provide the user more
context about how our recommendation system worked. To
do that we turned to a dimensionality reduction algorithm to
help us visualize the system.

4.3.1 Visualizing the System
We used a technique called called t-distributed Stochas-

tic Neighbor Embedding (t-SNE) to create a visualization of
our recommendation system. t-SNE diagrams have become
popular with data scientists that work with neural networks
as a tool for understanding how a model is making its deci-
sions. Using t-SNE, you can take the multi-dimensional re-
lationships encoded in a model and reduce them down to a
two-dimensional plot.

figure 4.7 An early version of the prototype with the t-SNE

diagram on the left.

68 Prototype

sooner), and the book-to-book as well as the user-to-user em-
beddings show signs of individually having converged in the
final model (this was seen by observing the distances between
the final embedding values; user-user embeddings had close
proximity as did item-item, however user-item embeddings
remained far away from each other). More data could help
with this, or simply a variation on the model structure we
chose. However, because of the time necessary to train each
new variation, we weren’t able to continue our model search.

Another general limitation of our model is that we had to
truncate the summaries of books to 64 words, a value chosen
for the resource implications of the training procedure and
the observation that many summaries devolve into quotes
and awards after this many words. This truncation happens
after we do some filtering, but it still requires us to throw away
a lot of potentially useful information (further contributing
to our problems with convergence). This filtering was a nec-
essary way to speed up model training because of our limited
time frame. Generally, filtering tricks like this are used to ac-
celerate training for a model survey, and then the full dataset
is used to train the final model. However, in our case training
the final model with the full dataset would have been too slow
to be useful. By truncating the data we were able to precache
all of the word-vector inputs to the model and store them to
an hdf5 file, a format which Keras can read quickly; moving to
the full dataset would have required us to compute these word
vectors on the fly, further slowing down the model.

Prototype 69

4.3 Product: Deep Bargain Book Shop
The simplest interface for a recommendation system is a

list of recommendations. For our prototype, we started with a
list, but quickly realized we needed to provide the user more
context about how our recommendation system worked. To
do that we turned to a dimensionality reduction algorithm to
help us visualize the system.

4.3.1 Visualizing the System
We used a technique called called t-distributed Stochas-

tic Neighbor Embedding (t-SNE) to create a visualization of
our recommendation system. t-SNE diagrams have become
popular with data scientists that work with neural networks
as a tool for understanding how a model is making its deci-
sions. Using t-SNE, you can take the multi-dimensional re-
lationships encoded in a model and reduce them down to a
two-dimensional plot.

figure 4.7 An early version of the prototype with the t-SNE

diagram on the left.

70 Prototype

The t-SNE visualization for our prototype represents each
book in the recommendation system as an x,y coordinate.
Similar books (as determined by the model) are near one an-
other. This representation dovetails with our natural human
spatial reasoning abilities, providing an intuitive way to ex-
plore a system.

Anytime you use t-SNE to explore a system, it is import-
ant to remember that it is necessarily a simplified represen-
tation of that system. Our model is comparing book descrip-
tions across 256 dimensions. The t-SNE technique tries to find
the best way to reduce those relationships down to just two
dimensions.6 As long as you keep that limitation in mind, a
t-SNE visualization can be a great general guide to a system.
We used it both to help debug the system as we built it and, in
the final prototype, to help explain the system to users.

Making the t-SNE visualization was challenging on sev-
eral levels. Generally what you hope to see in a t-SNE plot is
some type of meaningful clustering, like books of the same
genre being near each other. Whether you see clustering or
not could be an indication about whether your model is work-
ing, or it could be an indication you haven’t found the right
t-SNE parameters.7 Often, as in our case, t-SNEs take quite a

6 The imprecision of the method can be seen in the final prototype

where the recommended book rankings do not exactly correspond to

their distance from the selectecd book in the t-SNE. The discrepancy

is a consequence of compromises made among lost dimensions.

7 The interactive article How to Use t-SNE Effectively (https://distill.

pub/2016/misread-tsne/) provides a good overview of how different

parameters affect the visualization

Prototype 71

long time to run, so the parameter search can involve a lot
of waiting. We tend do a lot of small quick interation on our
prototypes and t-SNE generation was not a natural fit for that
process.

On the front-end side, interactively displaying all the
points in the t-SNE was a technical challenge. More conven-
tional browser visualization techniques, like using an SVG
or canvas element, bogged down when we threw more than
5,000 points at them. We turned to the Three.js Javascript
library which is focused on 3D graphics. Its use of WebGL
(which uses your computer’s GPU) let us pack in over 200,000
points without strain.8 In our final version, we reduced the

8 You can read about how we used Three.js in our blog post:

http://blog.fastforwardlabs.com/2017/10/04/uing-three-js-for-2d-

data-visualization.html.

figure 4.8 An early version of the prototype showing how a book

the system has not seen before (Obama: An Intimate Portrait) is

placed in relation to books already in the system.

70 Prototype

The t-SNE visualization for our prototype represents each
book in the recommendation system as an x,y coordinate.
Similar books (as determined by the model) are near one an-
other. This representation dovetails with our natural human
spatial reasoning abilities, providing an intuitive way to ex-
plore a system.

Anytime you use t-SNE to explore a system, it is import-
ant to remember that it is necessarily a simplified represen-
tation of that system. Our model is comparing book descrip-
tions across 256 dimensions. The t-SNE technique tries to find
the best way to reduce those relationships down to just two
dimensions.6 As long as you keep that limitation in mind, a
t-SNE visualization can be a great general guide to a system.
We used it both to help debug the system as we built it and, in
the final prototype, to help explain the system to users.

Making the t-SNE visualization was challenging on sev-
eral levels. Generally what you hope to see in a t-SNE plot is
some type of meaningful clustering, like books of the same
genre being near each other. Whether you see clustering or
not could be an indication about whether your model is work-
ing, or it could be an indication you haven’t found the right
t-SNE parameters.7 Often, as in our case, t-SNEs take quite a

6 The imprecision of the method can be seen in the final prototype

where the recommended book rankings do not exactly correspond to

their distance from the selectecd book in the t-SNE. The discrepancy

is a consequence of compromises made among lost dimensions.

7 The interactive article How to Use t-SNE Effectively (https://distill.

pub/2016/misread-tsne/) provides a good overview of how different

parameters affect the visualization

Prototype 71

long time to run, so the parameter search can involve a lot
of waiting. We tend do a lot of small quick interation on our
prototypes and t-SNE generation was not a natural fit for that
process.

On the front-end side, interactively displaying all the
points in the t-SNE was a technical challenge. More conven-
tional browser visualization techniques, like using an SVG
or canvas element, bogged down when we threw more than
5,000 points at them. We turned to the Three.js Javascript
library which is focused on 3D graphics. Its use of WebGL
(which uses your computer’s GPU) let us pack in over 200,000
points without strain.8 In our final version, we reduced the

8 You can read about how we used Three.js in our blog post:

http://blog.fastforwardlabs.com/2017/10/04/uing-three-js-for-2d-

data-visualization.html.

figure 4.8 An early version of the prototype showing how a book

the system has not seen before (Obama: An Intimate Portrait) is

placed in relation to books already in the system.

72 Prototype

number of points down to 10,000 to make the file size of the
data manageable.

Was the hard work worth it? We belive it was. The t-SNE vi-
sualization brought a layer of context to the prototype, show-
ing how recommendations based on one item fit into the larg-
er system. It also provided a nice illustration of our system’s
star feature – its ability to make recommendations for an item
it has never encountered before. As shown in the visualiza-
tion, it is able to do this by placing the new item, through an
embedding of its text description, in relation to the items al-
ready in the system. The recommendations for that item are
then simply the items "nearest" its position.

4.3.2 Deep Bargains
The t-SNE helped explain the technology underlying the

prototype, but our prototypes are not solely technical demon-
strations. They are also designed to show the product possi-
bilities that tech creates. We knew that our system’s ability to
make recommendations for new items, bypassing the cold-
start problem that many recommendation systems have, was
a big deal, but we needed to do more to show that usefulness
in the prototype.

We were also confronting an expectations problem. The
Amazon reviews dataset we used for our prototype contained
a limited number of books from a limited time period. If not
framed properly, this could have a negative effect on how us-
ers viewed the recommendation results. While the system can
make recommendations based on any arbitrary book, it can
only draw those recommendations from books in its dataset.
This might cause users to judge the recommendations overly

Prototype 73

harshly, especially if they were comparing them to Amazon’s
system, which has a much larger range of recommendation
candidates to choose from.

We came up with a story for the prototype that explained
the limited selection and also highlighted the model’s abili-
ty to make recommendations on new items. The prototype
would be an imaginary online book shop, "Deep Bargain
Books", whose eccentric owner had both a limited selection
of bargain priced books and machine learning expertise. This
scenario helped set expectations for the limited selection and

figure 4.9 Deep Bargain Book Shop, an imaginary online book

shop that helped us explain the strengths of the

recommendation system.

72 Prototype

number of points down to 10,000 to make the file size of the
data manageable.

Was the hard work worth it? We belive it was. The t-SNE vi-
sualization brought a layer of context to the prototype, show-
ing how recommendations based on one item fit into the larg-
er system. It also provided a nice illustration of our system’s
star feature – its ability to make recommendations for an item
it has never encountered before. As shown in the visualiza-
tion, it is able to do this by placing the new item, through an
embedding of its text description, in relation to the items al-
ready in the system. The recommendations for that item are
then simply the items "nearest" its position.

4.3.2 Deep Bargains
The t-SNE helped explain the technology underlying the

prototype, but our prototypes are not solely technical demon-
strations. They are also designed to show the product possi-
bilities that tech creates. We knew that our system’s ability to
make recommendations for new items, bypassing the cold-
start problem that many recommendation systems have, was
a big deal, but we needed to do more to show that usefulness
in the prototype.

We were also confronting an expectations problem. The
Amazon reviews dataset we used for our prototype contained
a limited number of books from a limited time period. If not
framed properly, this could have a negative effect on how us-
ers viewed the recommendation results. While the system can
make recommendations based on any arbitrary book, it can
only draw those recommendations from books in its dataset.
This might cause users to judge the recommendations overly

Prototype 73

harshly, especially if they were comparing them to Amazon’s
system, which has a much larger range of recommendation
candidates to choose from.

We came up with a story for the prototype that explained
the limited selection and also highlighted the model’s abili-
ty to make recommendations on new items. The prototype
would be an imaginary online book shop, "Deep Bargain
Books", whose eccentric owner had both a limited selection
of bargain priced books and machine learning expertise. This
scenario helped set expectations for the limited selection and

figure 4.9 Deep Bargain Book Shop, an imaginary online book

shop that helped us explain the strengths of the

recommendation system.

74 Prototype

provided the backdrop for us to demonstrate some of the busi-
ness opportunities semantic recommendations can unlock.

The most obvious advantage of a semantic recommenda-
tion system to a business owner is the ability to add a new item
to inventory and immediately integrate that item into the rel-
evant recommendations. Systems, like collaborative filtering,
that rely solely on user and item interaction are unable to do
that. The product possibilities go beyond expanding inven-
tory, however. In our prototype the recommendation system
is the method for the user to explore the selection of books.
To find books they are interested in, the user can search for
a book they like and, provided there is a description for that
book in the Google Books API, immediately view relevent
recommendations for it. The front page features recommen-
dations based on current New York Times bestsellers. The
recommendation interface becomes a method of navigating

figure 4.10 The final prototype, featuring the customer view on

the left and the admin view on the right.

Prototype 75

through the catalog, highlighting relevant in-stock books for
the customer.

We finished the story of the book shop by moving the t-SNE
visualization and further information about the recommend-
ed books into an "Admin" view. This was an acknowledge-
ment that while this information was useful in understanding
the system, it could be overwhelming for the average custom-
er just looking for a book. The admin section also features
the most extreme version of the model’s cold-start capabili-
ty — the option for the user to enter a freeform text descrip-
tion and see recommendations based on that description.

4.3.3 Further Product Possibilities

4.3.3.1 Marketing Tools
The ability to add your own custom description hints at

more tools that could be built with semantic recommendation
systems. A product directed at book publishers could provide
feedback for choosing a description for a book. It could show
the similarity between the chosen description and other al-
ready existing books. If you wanted a book to be recommend-
ed alongside Harry Potter you could tailor the description to
try and do that. If you had user embeddings alongside the
books, you could even see a prediction of the book’s audience
based on the entered description.

4.3.3.2 t-SNE as Interface
So far t-SNEs are primarily being used as tools for data sci-

entists. We are optimistic about the opportunities for using
visualizations as part of an interface for end users. They could

74 Prototype

provided the backdrop for us to demonstrate some of the busi-
ness opportunities semantic recommendations can unlock.

The most obvious advantage of a semantic recommenda-
tion system to a business owner is the ability to add a new item
to inventory and immediately integrate that item into the rel-
evant recommendations. Systems, like collaborative filtering,
that rely solely on user and item interaction are unable to do
that. The product possibilities go beyond expanding inven-
tory, however. In our prototype the recommendation system
is the method for the user to explore the selection of books.
To find books they are interested in, the user can search for
a book they like and, provided there is a description for that
book in the Google Books API, immediately view relevent
recommendations for it. The front page features recommen-
dations based on current New York Times bestsellers. The
recommendation interface becomes a method of navigating

figure 4.10 The final prototype, featuring the customer view on

the left and the admin view on the right.

Prototype 75

through the catalog, highlighting relevant in-stock books for
the customer.

We finished the story of the book shop by moving the t-SNE
visualization and further information about the recommend-
ed books into an "Admin" view. This was an acknowledge-
ment that while this information was useful in understanding
the system, it could be overwhelming for the average custom-
er just looking for a book. The admin section also features
the most extreme version of the model’s cold-start capabili-
ty — the option for the user to enter a freeform text descrip-
tion and see recommendations based on that description.

4.3.3 Further Product Possibilities

4.3.3.1 Marketing Tools
The ability to add your own custom description hints at

more tools that could be built with semantic recommendation
systems. A product directed at book publishers could provide
feedback for choosing a description for a book. It could show
the similarity between the chosen description and other al-
ready existing books. If you wanted a book to be recommend-
ed alongside Harry Potter you could tailor the description to
try and do that. If you had user embeddings alongside the
books, you could even see a prediction of the book’s audience
based on the entered description.

4.3.3.2 t-SNE as Interface
So far t-SNEs are primarily being used as tools for data sci-

entists. We are optimistic about the opportunities for using
visualizations as part of an interface for end users. They could

76 Prototype

help users better understand the recommendations they
are receiving and provide an intuitive way to make changes
to their own taste profile. They can also help us understand
how we explore a topic, as in our Wikipedia mapping project,
Encartopedia.9 Making t-SNE interfaces approachable will
require smart design work, and making them interactive in
the browser will require heavily-optomized front-end code,
but the payoff could be tremendous. As recommendation sys-
tems mediate more and more of our interactions, the desire of
customers to understand just why they’re being shown what
they’re being shown will grow. Thoughtful visualizations
could step in to fill that need.

4.4 General Engineering Considerations
There are several engineering considerations in deploying

a model like the one we implemented. First, the full model is
quite big — while the model itself is only ~50 MB,10 we must
also have our word2vec model loaded, which takes up 2.6 GB.
In addition, we must have access to all of the book summa-
ries, which comprise another data structure of considerable
size that must be stored in memory. These considerations,
however, can be mitigated by good engineering practices: the
word2vec model can be trimmed down and stored in an on-
disk database, as can the book summaries.

Still, the model very much wants to be run on a GPU. When
encapsulated in an HTTP API, the total time to embed a book

9 See http://encartopedia.fastforwardlabs.com/. Created by Sepand

Ansari.

10 Note that this 50 MB will reside in the GPU memory.

Prototype 77

description using the GPU is 0.082s, while the same operation
on a CPU takes 0.189s. This 2.3x slowdown may be justifiable
in comparison to the cost of a GPU, but it also may make the
difference between whether an application is feasible or not
(for example, if you have 4 hours every night to precompute
recommendations for your users, a 2.3x slowdown may sim-
ply make the process take longer than the allotted time).

Finally, model management can become an issue with
these sorts of methods. During the hyperparameter tuning
and model exploration phases, many dozens of models are
trained, evaluated, and compared. Even after a final model is
found, it is possible that this experimentation will continue
as new data is created and the user feedback of the deployed
models is considered. Having accountability as to what data
the models were trained on is critical for this, since we don’t
want to leak information from the training to the validation
steps.

One method to help alleviate this is to have all param-
eters, links to data, and random seeds in a particular model
be hardcoded into the model source and to pin a particular
trained model to a commit hash in Git. This means that for
any trained model, the model code at the proper commit hash
can be checked out and rerun to produce the same results.

76 Prototype

help users better understand the recommendations they
are receiving and provide an intuitive way to make changes
to their own taste profile. They can also help us understand
how we explore a topic, as in our Wikipedia mapping project,
Encartopedia.9 Making t-SNE interfaces approachable will
require smart design work, and making them interactive in
the browser will require heavily-optomized front-end code,
but the payoff could be tremendous. As recommendation sys-
tems mediate more and more of our interactions, the desire of
customers to understand just why they’re being shown what
they’re being shown will grow. Thoughtful visualizations
could step in to fill that need.

4.4 General Engineering Considerations
There are several engineering considerations in deploying

a model like the one we implemented. First, the full model is
quite big — while the model itself is only ~50 MB,10 we must
also have our word2vec model loaded, which takes up 2.6 GB.
In addition, we must have access to all of the book summa-
ries, which comprise another data structure of considerable
size that must be stored in memory. These considerations,
however, can be mitigated by good engineering practices: the
word2vec model can be trimmed down and stored in an on-
disk database, as can the book summaries.

Still, the model very much wants to be run on a GPU. When
encapsulated in an HTTP API, the total time to embed a book

9 See http://encartopedia.fastforwardlabs.com/. Created by Sepand

Ansari.

10 Note that this 50 MB will reside in the GPU memory.

Prototype 77

description using the GPU is 0.082s, while the same operation
on a CPU takes 0.189s. This 2.3x slowdown may be justifiable
in comparison to the cost of a GPU, but it also may make the
difference between whether an application is feasible or not
(for example, if you have 4 hours every night to precompute
recommendations for your users, a 2.3x slowdown may sim-
ply make the process take longer than the allotted time).

Finally, model management can become an issue with
these sorts of methods. During the hyperparameter tuning
and model exploration phases, many dozens of models are
trained, evaluated, and compared. Even after a final model is
found, it is possible that this experimentation will continue
as new data is created and the user feedback of the deployed
models is considered. Having accountability as to what data
the models were trained on is critical for this, since we don’t
want to leak information from the training to the validation
steps.

One method to help alleviate this is to have all param-
eters, links to data, and random seeds in a particular model
be hardcoded into the model source and to pin a particular
trained model to a commit hash in Git. This means that for
any trained model, the model code at the proper commit hash
can be checked out and rerun to produce the same results.

78 Prototype Recommendation Vendors 79

chapter 5
Recommendation Vendors

Recommendation services fall into two broad categories:
general purpose and purpose built. Some vendors will sell
you an API that returns recommendations/predictions, and
some vendors will tailor a solution to your business needs. A
tailored solution (one would hope) ought to be more accurate
and better suited to a specific domain. Note also that a state-
of-the-art recommender can take advantage of semantic in-
formation in the features that prior, less advanced, recom-
menders would ignore.

5.1 General-Purpose APIs
General-purpose APIs offer one-size-fits-all recommen-

dations or predictions with no (or little) adaptation to a given
problem. This makes them easier to deploy, but there’s a slight
performance cost in that a less-tailored configuration will not
take advantage of domain-specific information. The larger
APIs have no problems with scale and generally perform well.

5.1.1 Microsoft Cognitive Services

The Azure recommendations module1 is in preview at

1 See https://azure.microsoft.com/en-us/services/cognitive-ser

vices/recommendations/.

78 Prototype Recommendation Vendors 79

chapter 5
Recommendation Vendors

Recommendation services fall into two broad categories:
general purpose and purpose built. Some vendors will sell
you an API that returns recommendations/predictions, and
some vendors will tailor a solution to your business needs. A
tailored solution (one would hope) ought to be more accurate
and better suited to a specific domain. Note also that a state-
of-the-art recommender can take advantage of semantic in-
formation in the features that prior, less advanced, recom-
menders would ignore.

5.1 General-Purpose APIs
General-purpose APIs offer one-size-fits-all recommen-

dations or predictions with no (or little) adaptation to a given
problem. This makes them easier to deploy, but there’s a slight
performance cost in that a less-tailored configuration will not
take advantage of domain-specific information. The larger
APIs have no problems with scale and generally perform well.

5.1.1 Microsoft Cognitive Services

The Azure recommendations module1 is in preview at

1 See https://azure.microsoft.com/en-us/services/cognitive-ser

vices/recommendations/.

80 Recommendation Vendors

the time of writing. It’s not fully integrated into Microsoft’s
Cognitive Services ML platform yet, but it functions well
independently.

Azure’s recommendation engine views the world from a
product recommendation standpoint. The inputs to the mod-
el are a catalog file and a usage file. The catalog file contains
the master list of products available and some basic informa-
tion about the products, like name, category (e.g., "Software,"

"Gaming," or "Services"), a description, and any additional
features that are useful to your application. The usage file
simply describes interactions that have taken place, includ-
ing the user, product, time, and (optionally) event type, such
as purchase, click, or add to cart. Azure offers several options
for training the model, allowing some control over mod-
el features, and provides insight into post-training model
evaluations.

Azure has a convenient API explorer;2 it includes specifi-
cations for data formats and each operation (e.g., uploading
data, training a model, and getting recommendations), as
well as a testing console for each method that generates re-
quest code in several languages and shows you the responses
from the API in real time. Microsoft also includes sample data
to guide you through the process of using the API. This ex-
plorer makes it simple to get started with recommendations.

Overall, we found Azure’s API simple to set up and use,
and it produced reasonable results fairly quickly.

2 See https://westus.dev.cognitive.micro soft.com/docs/services/

Recommendations.V4.0/.

Recommendation Vendors 81

5.1.2 Amazon Machine Learning
Amazon’s Machine Learning (ML) platform3 puts recom-

mendations under the rubric of predictions, a reasonable
view given that a recommendation is in effect a prediction of
what a user would like to see, buy, or otherwise interact with.
The service is less focused on products than Azure’s, which is
somewhat surprising in light of Amazon’s origins as a retailer.

Amazon’s recommendation engine is not as configu-
rable as Azure’s when it comes to training — for example, it
trains all models using regression. Its data is somewhat more
flexible, though. Input is from one master file uploaded to
Amazon’s cloud storage service, S3. It takes only a list of us-
er-product interactions, but each interaction can include an
arbitrary number of features used to train its models. The lack
of a catalog file implicitly means that Amazon ML’s "catalog"
is gleaned from the usage file itself, recognizing no products
that have not been interacted with.4

Amazon ML can be configured through the AWS web con-
sole for setup and testing. It is not as simple to use as Azure’s
offering, but it provides reasonable guidance and statistics
on model quality. Once set up, it can be accessed through
provided SDKs in several languages, including Java, Python,
and JavaScript through Node.js.5 Android and iOS SDKs are
also offered. Amazon ML currently runs only on machines in
Amazon’s US East (Northern VA) and EU (Ireland) data centers,

3 See https://aws.amazon.com/aml/.

4 This has implications for cold starting new products or users. They

must be handled by comparisons of category alone.

5 See https://aws.amazon.com/aml/getting-started/.

80 Recommendation Vendors

the time of writing. It’s not fully integrated into Microsoft’s
Cognitive Services ML platform yet, but it functions well
independently.

Azure’s recommendation engine views the world from a
product recommendation standpoint. The inputs to the mod-
el are a catalog file and a usage file. The catalog file contains
the master list of products available and some basic informa-
tion about the products, like name, category (e.g., "Software,"

"Gaming," or "Services"), a description, and any additional
features that are useful to your application. The usage file
simply describes interactions that have taken place, includ-
ing the user, product, time, and (optionally) event type, such
as purchase, click, or add to cart. Azure offers several options
for training the model, allowing some control over mod-
el features, and provides insight into post-training model
evaluations.

Azure has a convenient API explorer;2 it includes specifi-
cations for data formats and each operation (e.g., uploading
data, training a model, and getting recommendations), as
well as a testing console for each method that generates re-
quest code in several languages and shows you the responses
from the API in real time. Microsoft also includes sample data
to guide you through the process of using the API. This ex-
plorer makes it simple to get started with recommendations.

Overall, we found Azure’s API simple to set up and use,
and it produced reasonable results fairly quickly.

2 See https://westus.dev.cognitive.micro soft.com/docs/services/

Recommendations.V4.0/.

Recommendation Vendors 81

5.1.2 Amazon Machine Learning
Amazon’s Machine Learning (ML) platform3 puts recom-

mendations under the rubric of predictions, a reasonable
view given that a recommendation is in effect a prediction of
what a user would like to see, buy, or otherwise interact with.
The service is less focused on products than Azure’s, which is
somewhat surprising in light of Amazon’s origins as a retailer.

Amazon’s recommendation engine is not as configu-
rable as Azure’s when it comes to training — for example, it
trains all models using regression. Its data is somewhat more
flexible, though. Input is from one master file uploaded to
Amazon’s cloud storage service, S3. It takes only a list of us-
er-product interactions, but each interaction can include an
arbitrary number of features used to train its models. The lack
of a catalog file implicitly means that Amazon ML’s "catalog"
is gleaned from the usage file itself, recognizing no products
that have not been interacted with.4

Amazon ML can be configured through the AWS web con-
sole for setup and testing. It is not as simple to use as Azure’s
offering, but it provides reasonable guidance and statistics
on model quality. Once set up, it can be accessed through
provided SDKs in several languages, including Java, Python,
and JavaScript through Node.js.5 Android and iOS SDKs are
also offered. Amazon ML currently runs only on machines in
Amazon’s US East (Northern VA) and EU (Ireland) data centers,

3 See https://aws.amazon.com/aml/.

4 This has implications for cold starting new products or users. They

must be handled by comparisons of category alone.

5 See https://aws.amazon.com/aml/getting-started/.

82 Recommendation Vendors

which could diminish request performance in other regions.
We found that Amazon ML was more difficult to set up

than Azure, but was reasonably straightforward and had sim-
ilar performance.

5.1.3 Google Cloud Prediction
For now, Google offers its Cloud Prediction API using

Spark. We did not evaluate this product in depth, though,
since Google has declared that it will no longer support its
prediction service after April 2018. Google refers Prediction
API users to its Cloud Machine Learning Engine using Tensor-
Flow,6 and has admitted that Cloud Prediction was unmain-
tained and had few users.7 This suggests that Google has little
interest in serving recommendation customers.

5.2 Smaller Vendors
In addition to the Goliaths of web services above, there

are numerous smaller vendors that provide recommendation
APIs. Some are more specialized than others. We list some of
these vendors below.

5.2.1 Domain-Focused API Vendors
Certain APIs are targeted at specific types of recommen-

dations. Fashion is one special case, because the recommen-
dations must be adaptable to temporal constraints (fashion
products expire much more quickly than, say, books, movies,

6 See https://cloud.google.com/solutions/recommendations-us

ing-machine-learning-on-compute-engine.

7 See https://news.ycombinator.com/item?id=14343389.

Recommendation Vendors 83

or tools). Offerings in this area include:

• Vue.ai (https://vue.ai/) - Vue mainly targets the fashion
industry, but also handles other retail outlets (furniture,
for example).

• Apptus (https://www.apptus.com/customer-success/cus
tomers) - Similar to Vue, Apptus’s clients include several
in the fashion industry and a lot of well-known retailers.

Other Vendors
The vendors below offer recommendation services that

are less directed to a specific domain:

• Rich Relevance (https://www.richrelevance.com/) - Rich
Relevance is a personalization vendor whose platform
includes a recommendation engine. They have a number
of high-profile clients across a broad range of industries,
including fashion, food, and electronics.

• YUSP (http://www.yusp.com/solutions/) - Like Rich
Relevance, YUSP offers a personalization engine with a
recommender included. Its engine is adaptable for prod-
uct recommendations, email campaigns, coupons, and
in-store interactions.

• Strands Retail (http://retail.strands.com/) - Strands Retail
offers a recommendation API in the form of a JavaScript
library. The library can be used to add recommendations
to websites and emails, adapted for user needs.

• 4-Tell (https://get4tell.com/) - 4-Tell offers business-to-
consumer and business-to-business platforms. Its offer-
ing includes inline search completion recommendations

82 Recommendation Vendors

which could diminish request performance in other regions.
We found that Amazon ML was more difficult to set up

than Azure, but was reasonably straightforward and had sim-
ilar performance.

5.1.3 Google Cloud Prediction
For now, Google offers its Cloud Prediction API using

Spark. We did not evaluate this product in depth, though,
since Google has declared that it will no longer support its
prediction service after April 2018. Google refers Prediction
API users to its Cloud Machine Learning Engine using Tensor-
Flow,6 and has admitted that Cloud Prediction was unmain-
tained and had few users.7 This suggests that Google has little
interest in serving recommendation customers.

5.2 Smaller Vendors
In addition to the Goliaths of web services above, there

are numerous smaller vendors that provide recommendation
APIs. Some are more specialized than others. We list some of
these vendors below.

5.2.1 Domain-Focused API Vendors
Certain APIs are targeted at specific types of recommen-

dations. Fashion is one special case, because the recommen-
dations must be adaptable to temporal constraints (fashion
products expire much more quickly than, say, books, movies,

6 See https://cloud.google.com/solutions/recommendations-us

ing-machine-learning-on-compute-engine.

7 See https://news.ycombinator.com/item?id=14343389.

Recommendation Vendors 83

or tools). Offerings in this area include:

• Vue.ai (https://vue.ai/) - Vue mainly targets the fashion
industry, but also handles other retail outlets (furniture,
for example).

• Apptus (https://www.apptus.com/customer-success/cus
tomers) - Similar to Vue, Apptus’s clients include several
in the fashion industry and a lot of well-known retailers.

Other Vendors
The vendors below offer recommendation services that

are less directed to a specific domain:

• Rich Relevance (https://www.richrelevance.com/) - Rich
Relevance is a personalization vendor whose platform
includes a recommendation engine. They have a number
of high-profile clients across a broad range of industries,
including fashion, food, and electronics.

• YUSP (http://www.yusp.com/solutions/) - Like Rich
Relevance, YUSP offers a personalization engine with a
recommender included. Its engine is adaptable for prod-
uct recommendations, email campaigns, coupons, and
in-store interactions.

• Strands Retail (http://retail.strands.com/) - Strands Retail
offers a recommendation API in the form of a JavaScript
library. The library can be used to add recommendations
to websites and emails, adapted for user needs.

• 4-Tell (https://get4tell.com/) - 4-Tell offers business-to-
consumer and business-to-business platforms. Its offer-
ing includes inline search completion recommendations

84 Recommendation Vendors

and email content recommendations.
• Recombee (https://www.recombee.com/) - Recombee of-

fers a general-purpose recommendation engine through
its API. Packages are provided for most popular languag-
es, including Python, Ruby, Java, and Node.js.

• Tamber (https://tamber.com/) - Tamber claims that its API
uses state-of-the-art algorithms, tuned for maximum per-
formance, and avoids feedback loops and addresses the
cold start problem. The API libraries are offered in many
popular programming languages.

• Barilliance (https://www.barilliance.com/) - Barilliance’s
recommendation engine uses online interactions, but
can also combine them with point-of-sale data from
brick-and-mortar stores for a given customer to improve
recommendations. It offers a configurable API that allows
some customization with API users' business rules.

• Trouvus (http://trouvus.com/) - Trouvus provides a retail
recommendation engine and an engine specialized for
video-on-demand applications.

• Sigmoidal (https://sigmoidal.io/recommender-sys
tems-recommendation- engine/) - Unlike most vendors
who work with a stock API, Sigmoidal is a consulting
company that develops custom recommender applica-
tions tailored to each client’s data and use cases.

Open Source Projects 85

chapter 6
Open Source Projects

Open source recommendation systems are useful for put-
ting together basic systems, getting an intuition for the per-
formance of various algorithms on a particular dataset, and
sanity checks. Depending on the maturity of the packages,
some can be deployed in production. There are many in the
wild; we focus on the handful that are recent, complete, and
well documented.

6.1 Surprise
Surprise (http://surpriselib.com) is a Python scikit for

recommendation systems built by Nicolas Hug. Out of the
box, the package provides many popular recommendation
algorithms (see table 6.1) as well as the MovieLens dataset
and a dataset of anonymous ratings from Jester, an online
joke recommender system. Custom datasets can be loaded
from a file or from a Pandas DataFrame. Installing Surprise is
straightforward; the only dependency is NumPy. While useful
for smaller datasets, we ran into tractability issues for neigh-
borhood algorithms on large datasets.

6.2 LightFM
LightFM (http://lyst.github.io/lightfm/docs/) (built by

Maciej Kula while at Lyst) is a Python package that provides

84 Recommendation Vendors

and email content recommendations.
• Recombee (https://www.recombee.com/) - Recombee of-

fers a general-purpose recommendation engine through
its API. Packages are provided for most popular languag-
es, including Python, Ruby, Java, and Node.js.

• Tamber (https://tamber.com/) - Tamber claims that its API
uses state-of-the-art algorithms, tuned for maximum per-
formance, and avoids feedback loops and addresses the
cold start problem. The API libraries are offered in many
popular programming languages.

• Barilliance (https://www.barilliance.com/) - Barilliance’s
recommendation engine uses online interactions, but
can also combine them with point-of-sale data from
brick-and-mortar stores for a given customer to improve
recommendations. It offers a configurable API that allows
some customization with API users' business rules.

• Trouvus (http://trouvus.com/) - Trouvus provides a retail
recommendation engine and an engine specialized for
video-on-demand applications.

• Sigmoidal (https://sigmoidal.io/recommender-sys
tems-recommendation- engine/) - Unlike most vendors
who work with a stock API, Sigmoidal is a consulting
company that develops custom recommender applica-
tions tailored to each client’s data and use cases.

Open Source Projects 85

chapter 6
Open Source Projects

Open source recommendation systems are useful for put-
ting together basic systems, getting an intuition for the per-
formance of various algorithms on a particular dataset, and
sanity checks. Depending on the maturity of the packages,
some can be deployed in production. There are many in the
wild; we focus on the handful that are recent, complete, and
well documented.

6.1 Surprise
Surprise (http://surpriselib.com) is a Python scikit for

recommendation systems built by Nicolas Hug. Out of the
box, the package provides many popular recommendation
algorithms (see table 6.1) as well as the MovieLens dataset
and a dataset of anonymous ratings from Jester, an online
joke recommender system. Custom datasets can be loaded
from a file or from a Pandas DataFrame. Installing Surprise is
straightforward; the only dependency is NumPy. While useful
for smaller datasets, we ran into tractability issues for neigh-
borhood algorithms on large datasets.

6.2 LightFM
LightFM (http://lyst.github.io/lightfm/docs/) (built by

Maciej Kula while at Lyst) is a Python package that provides

86 Open Source Projects

a hybrid recommendation model by incorporating metadata
at both the user and the item level. Both implicit and explicit
models (see 3.1.1 Collaborative Filtering) are included. Implic-
it models are trained through negative sampling, where items
are randomly sampled to act as negatives (similar to the neg-
ative sampling used in the embedding models). The model
reduces to traditional matrix factorization when no metadata
is provided. The package has the MovieLens dataset built in,
and external datasets can be accommodated by transforming
them into matrix form.1 LightFM is written in Cython and can
run on multiple cores. Installation for multicore functionality
is trickier on macOS but can be done via Docker.

6.3 Spotlight
Spotlight (https://maciejkula.github.io/spotlight/) is a Py-

thon package built using PyTorch that enables users to build
traditional and neural network-based recommendation sys-
tems. It was also written by Maciej Kula. Both implicit and
explicit models are available. Similar to the LightFM package,
implicit models are trained through negative sampling. The
package provides the MovieLens and Goodbooks datasets.2
It also has a module for generating synthetic sequential data
with known properties; this type of data is useful when test-
ing deep recommendation models. External datasets can be
accommodated by transforming them into the internal Spot-

1 Input data is a sparse matrix where rows represent users, and

columns represent items.

2 The Goodbooks dataset contains six million ratings for ten thou-

sand of the most popular books.

Open Source Projects 87

light representation with a few lines of code. Installation is
relatively straightforward; PyTorch is an obvious dependency.

6.4 Implicit
Implicit (http://implicit.readthedocs.io/en/latest/), built

by Ben Frederickson, is a Python package that provides a
collaborative filtering model for implicit datasets based on
observations of user actions. To handle implicit data, rather
than using negative sampling the package implements a spe-
cific matrix factorization-based model to infer ratings from,
for example, the number of times a user fully watched a show.
Implicit does not have built-in datasets; input data needs to
be in a matrix form.3 Installation is straightforward. Running
with macOS requires an OpenMP compiler.

6.5 Apple Turi Create
Apple very recently made its Turi Create engine available

on GitHub, including a recommender (https://github.com/ap
ple/turicreate/blob/master/userguide/recommender/intro
duction.md). Apple did not develop this engine itself, but ac-
quired it along with Turi. Given the timing of this release, we
were not able to test it. Installation instructions are straight-
forward, but Python 3.5+ is not yet supported.

Turi Create uses SFrames as the primary data structure for
extracting data from CSV, JSON, and SQL formats. It supports
both explicit and implicit feedback and provides matrix fac-
torization and neighborhood-based recommendation algo-

3 Specifically, a compressed sparse row (CSR) matrix, where rows

represent items and columns represent users.

86 Open Source Projects

a hybrid recommendation model by incorporating metadata
at both the user and the item level. Both implicit and explicit
models (see 3.1.1 Collaborative Filtering) are included. Implic-
it models are trained through negative sampling, where items
are randomly sampled to act as negatives (similar to the neg-
ative sampling used in the embedding models). The model
reduces to traditional matrix factorization when no metadata
is provided. The package has the MovieLens dataset built in,
and external datasets can be accommodated by transforming
them into matrix form.1 LightFM is written in Cython and can
run on multiple cores. Installation for multicore functionality
is trickier on macOS but can be done via Docker.

6.3 Spotlight
Spotlight (https://maciejkula.github.io/spotlight/) is a Py-

thon package built using PyTorch that enables users to build
traditional and neural network-based recommendation sys-
tems. It was also written by Maciej Kula. Both implicit and
explicit models are available. Similar to the LightFM package,
implicit models are trained through negative sampling. The
package provides the MovieLens and Goodbooks datasets.2
It also has a module for generating synthetic sequential data
with known properties; this type of data is useful when test-
ing deep recommendation models. External datasets can be
accommodated by transforming them into the internal Spot-

1 Input data is a sparse matrix where rows represent users, and

columns represent items.

2 The Goodbooks dataset contains six million ratings for ten thou-

sand of the most popular books.

Open Source Projects 87

light representation with a few lines of code. Installation is
relatively straightforward; PyTorch is an obvious dependency.

6.4 Implicit
Implicit (http://implicit.readthedocs.io/en/latest/), built

by Ben Frederickson, is a Python package that provides a
collaborative filtering model for implicit datasets based on
observations of user actions. To handle implicit data, rather
than using negative sampling the package implements a spe-
cific matrix factorization-based model to infer ratings from,
for example, the number of times a user fully watched a show.
Implicit does not have built-in datasets; input data needs to
be in a matrix form.3 Installation is straightforward. Running
with macOS requires an OpenMP compiler.

6.5 Apple Turi Create
Apple very recently made its Turi Create engine available

on GitHub, including a recommender (https://github.com/ap
ple/turicreate/blob/master/userguide/recommender/intro
duction.md). Apple did not develop this engine itself, but ac-
quired it along with Turi. Given the timing of this release, we
were not able to test it. Installation instructions are straight-
forward, but Python 3.5+ is not yet supported.

Turi Create uses SFrames as the primary data structure for
extracting data from CSV, JSON, and SQL formats. It supports
both explicit and implicit feedback and provides matrix fac-
torization and neighborhood-based recommendation algo-

3 Specifically, a compressed sparse row (CSR) matrix, where rows

represent items and columns represent users.

88 Open Source Projects

rithms. The quickest way to get a recommender up and run-
ning is to let the system automatically choose a model based
on the properties of the data. For example, if the input data
only has user and movie pairs, a ranking model based on item
similarity (neighborhood approach) will be chosen. One can
also specify a model explicitly. Turi Create partially addresses
the cold start problem for new items by supporting neighbor-
hood models for item content.

6.6 Apache Spark
Apache Spark is an open source cluster computing frame-

work. Its machine learning library (MLlib) has a matrix fac-
torization-based recommendation algorithm trained using
an alternating least squares (ALS) method. It supports both
explicit and implicit feedback. For neighborhood methods,
LSH is also included in the library. Spark’s recommendation
engine is scalable, distributed, and can be deployed easily into
a web application.

6.7 Our Recommendations
Of these packages, Surprise is most useful for learning

about basic recommendation systems when you have small-
er datasets (thousands of users and thousands of products)
with explicit data. Spotlight, on the other hand, allows you to
experiment with deep learning techniques and compare the
results with those of traditional matrix factorization recom-
menders. In addition, Spotlight scales to larger datasets (tens
of thousands of users and tens of thousands of products) and
can handle both implicit and explicit data.

Open Source Projects 89

LightFM and Implicit are specialized packages. If you have
metadata in addition to just user-product ratings, LightFM
can be used to build a hybrid recommender where the cold
start problem is alleviated. If you only have implicit data (for
example, the length of time users spend on a particular show),
Implicit allows you to build a recommendation system based
on ratings inferred from the available data.

In terms of speed, Turi Create seems to provide the quick-
est path to a working recommendation system. Spark’s ma-
trix factorization-based recommender also provides an easy
way to build a basic scalable and deployable system using data
in existing clusters.

88 Open Source Projects

rithms. The quickest way to get a recommender up and run-
ning is to let the system automatically choose a model based
on the properties of the data. For example, if the input data
only has user and movie pairs, a ranking model based on item
similarity (neighborhood approach) will be chosen. One can
also specify a model explicitly. Turi Create partially addresses
the cold start problem for new items by supporting neighbor-
hood models for item content.

6.6 Apache Spark
Apache Spark is an open source cluster computing frame-

work. Its machine learning library (MLlib) has a matrix fac-
torization-based recommendation algorithm trained using
an alternating least squares (ALS) method. It supports both
explicit and implicit feedback. For neighborhood methods,
LSH is also included in the library. Spark’s recommendation
engine is scalable, distributed, and can be deployed easily into
a web application.

6.7 Our Recommendations
Of these packages, Surprise is most useful for learning

about basic recommendation systems when you have small-
er datasets (thousands of users and thousands of products)
with explicit data. Spotlight, on the other hand, allows you to
experiment with deep learning techniques and compare the
results with those of traditional matrix factorization recom-
menders. In addition, Spotlight scales to larger datasets (tens
of thousands of users and tens of thousands of products) and
can handle both implicit and explicit data.

Open Source Projects 89

LightFM and Implicit are specialized packages. If you have
metadata in addition to just user-product ratings, LightFM
can be used to build a hybrid recommender where the cold
start problem is alleviated. If you only have implicit data (for
example, the length of time users spend on a particular show),
Implicit allows you to build a recommendation system based
on ratings inferred from the available data.

In terms of speed, Turi Create seems to provide the quick-
est path to a working recommendation system. Spark’s ma-
trix factorization-based recommender also provides an easy
way to build a basic scalable and deployable system using data
in existing clusters.

90 Open Source Projects Ethical Considerations 91

chapter 7
Ethical Considerations

With the increasing popularity of online retailers, web-
sites, and social media platforms, the amount of physical
and digital goods (as well as news and entertainment media
content) available to us has increased greatly. Whereas brick-
and-mortar stores are limited by shelf space in terms of what
physical goods they can offer, online stores, unencumbered
by these limits, can propose a much wider variety. As of No-
vember 2017, Amazon, for example, had a total of 573,374,133
products on sale.1

1 See https://www.scrapehero.com/how-many-products-does-ama

zon-sell-november-2017/.

figure 7.1 The sheer amount of items available online make fil-

tering strategies like recommendation systems necessary.

90 Open Source Projects Ethical Considerations 91

chapter 7
Ethical Considerations

With the increasing popularity of online retailers, web-
sites, and social media platforms, the amount of physical
and digital goods (as well as news and entertainment media
content) available to us has increased greatly. Whereas brick-
and-mortar stores are limited by shelf space in terms of what
physical goods they can offer, online stores, unencumbered
by these limits, can propose a much wider variety. As of No-
vember 2017, Amazon, for example, had a total of 573,374,133
products on sale.1

1 See https://www.scrapehero.com/how-many-products-does-ama

zon-sell-november-2017/.

figure 7.1 The sheer amount of items available online make fil-

tering strategies like recommendation systems necessary.

92 Ethical Considerations

Given internet access and efficient logistics, (almost) re-
gardless of consumer location, the greater variety of available
goods and content means niche interests can be served. But
with greater variety comes the problem of discoverability: the
sheer volume of distinct products makes it hard for consum-
ers to find the ones they may like or want.

Search allows consumers to find items they know exist,
while recommendations systems introduce consumers to
items they may not know exist: items they may like, items
they may want to buy. For subscription platforms (e.g., Spotify,
Netflix), recommenders enable subscribers to make easy use
of the platform. Recommendation systems help us navigate a
world of variety, novelty, and consumer choice.

In terms of consumption, the number of hours per day per
user has remained constant: there are only so many products
we can buy, songs we can listen to, movies we can watch, and
stories we can read in a single day. Money has always been a
limiting resource, but over the past years, attention has be-
come a newly scarce one. Recommendation systems guide
our attention as we navigate this world of variety, novelty, and
choice; they are convenient, and increasingly ubiquitous.

As such, recommendation systems are powerful. For ex-
ample, an informed citizenry is a crucial component of a
well-functioning democracy, and society relies on the news
media for information. Increasingly, recommendation sys-
tems guide the news we consume. The design and deploy-
ment of such systems requires thought to ensure that they are
actually helpful, and not harmful.

Ethical Considerations 93

7.1 Filter Bubbles & Echo Chambers
Internet activist Eli Pariser coined the term "filter bubble"

circa 2010,2 to describe the personalized ecosystem of infor-
mation delivered to a user by search and recommendation
systems that filter content through the lens of past behavior.
A related concept is that of the "echo chamber," where peo-
ple with similar viewpoints share and discuss information or
ideas in a self-reinforcing manner, leading to the exclusion of
other perspectives.

These concepts highlight a growing concern that algo-
rithms could contribute to a world in which people are ex-
posed to less diverse viewpoints over time. In 2013, the EU

2 See https://www.penguinrandomhouse.com/books/309214/the-fil

ter-bubble-by-eli-pariser/9780143121237/.

figure 7.2 If they are not calibrated carefully, recommendation

systems can limit users to a filter bubble based on their past

behavior.

User

- Different item types

User

Step 1 Step 2
User chooses a certain type

of item in one interaction
User only receives

recommendations for that
type of content

92 Ethical Considerations

Given internet access and efficient logistics, (almost) re-
gardless of consumer location, the greater variety of available
goods and content means niche interests can be served. But
with greater variety comes the problem of discoverability: the
sheer volume of distinct products makes it hard for consum-
ers to find the ones they may like or want.

Search allows consumers to find items they know exist,
while recommendations systems introduce consumers to
items they may not know exist: items they may like, items
they may want to buy. For subscription platforms (e.g., Spotify,
Netflix), recommenders enable subscribers to make easy use
of the platform. Recommendation systems help us navigate a
world of variety, novelty, and consumer choice.

In terms of consumption, the number of hours per day per
user has remained constant: there are only so many products
we can buy, songs we can listen to, movies we can watch, and
stories we can read in a single day. Money has always been a
limiting resource, but over the past years, attention has be-
come a newly scarce one. Recommendation systems guide
our attention as we navigate this world of variety, novelty, and
choice; they are convenient, and increasingly ubiquitous.

As such, recommendation systems are powerful. For ex-
ample, an informed citizenry is a crucial component of a
well-functioning democracy, and society relies on the news
media for information. Increasingly, recommendation sys-
tems guide the news we consume. The design and deploy-
ment of such systems requires thought to ensure that they are
actually helpful, and not harmful.

Ethical Considerations 93

7.1 Filter Bubbles & Echo Chambers
Internet activist Eli Pariser coined the term "filter bubble"

circa 2010,2 to describe the personalized ecosystem of infor-
mation delivered to a user by search and recommendation
systems that filter content through the lens of past behavior.
A related concept is that of the "echo chamber," where peo-
ple with similar viewpoints share and discuss information or
ideas in a self-reinforcing manner, leading to the exclusion of
other perspectives.

These concepts highlight a growing concern that algo-
rithms could contribute to a world in which people are ex-
posed to less diverse viewpoints over time. In 2013, the EU

2 See https://www.penguinrandomhouse.com/books/309214/the-fil

ter-bubble-by-eli-pariser/9780143121237/.

figure 7.2 If they are not calibrated carefully, recommendation

systems can limit users to a filter bubble based on their past

behavior.

User

- Different item types

User

Step 1 Step 2
User chooses a certain type

of item in one interaction
User only receives

recommendations for that
type of content

94 Ethical Considerations

High Level Group of Media Freedom and Pluralism noted
that "Increasing filtering mechanisms makes it more likely
for people to only get news on subjects they are interested
in, and with the perspective they identify with. Such devel-
opments undoubtedly have a potentially negative impact on
democracy."3

However, the jury is still out on the role of algorithms in
creating filter bubbles and echo chambers. For example, in-
dividual choices about what content to consume, especially
when it comes to news media, have always been subject to
factors such as confirmation bias (the tendency to search
for, interpret, favor, and recall information in a way that con-
firms one’s preexisting beliefs or hypotheses) — and a study
conducted by Facebook in 2015 found that individual choices
more strongly determine news media consumption than the
Facebook news feed.4

Regardless of how filter bubbles and echo chambers are
actually created, though, semantic recommenders may fur-
ther "seal" the bubble or chamber. Prior to semantic recom-
menders (due to the lack of a solution for the cold start prob-
lem), developers had little choice but to introduce to users
new items that they did not yet know or predict the users
would like. Consequently, users could encounter items not
in accordance with past behavior, thereby increasing the di-

3 See http://ec.europa.eu/information_society/media_task

force/doc/pluralism/hlg/hlg_final_report.pdf.

4 See http://science.sciencemag.org/content/early/2015/05/06/

science.aaa1160. Given the researchers' affiliations, there may, of

course, be a conflict of interest at play.

Ethical Considerations 95

versity in the set of items they were presented with. With se-
mantic recommenders such chance encounters are less likely
to happen. Furthermore, since semantic recommenders can
trace the development of user preferences over time (driven,
in part, by current mood and opinion) and produce recom-
mendations accordingly, they can act as polarizers in times of
heated discourse.

To combat the potentially harmful effects of personalized
search and recommendation systems, some suggest that
developers use "exposure diversity" as a design principle
for these systems.5 Diversity becomes part of what the algo-
rithm optimizes for. Exposure diversity may help foster our
collective ability to digest diverse viewpoints for civil dis-
course, for example, and even reduce confirmation bias: pref-
erence-inconsistent recommendations are known to trigger
critical thinking patterns that can help overcome such bias.6
We may, furthermore, consider the development of tools to
inform readers about their news diet, providing an overview
of news consumption behavior in aggregate, and develop rec-
ommenders expressly designed to surface articles on topics
of interest, but with an opposing view, to help inform read-
ers about the extent of their bubble and encourage more bal-
anced consumption.

5 See http://www.tandfonline.com/doi/full/10.1080/136911

8X.2016.1271900.

6 See https://www.sciencedirect.com/science/article/pii/

S0747563212001963.

94 Ethical Considerations

High Level Group of Media Freedom and Pluralism noted
that "Increasing filtering mechanisms makes it more likely
for people to only get news on subjects they are interested
in, and with the perspective they identify with. Such devel-
opments undoubtedly have a potentially negative impact on
democracy."3

However, the jury is still out on the role of algorithms in
creating filter bubbles and echo chambers. For example, in-
dividual choices about what content to consume, especially
when it comes to news media, have always been subject to
factors such as confirmation bias (the tendency to search
for, interpret, favor, and recall information in a way that con-
firms one’s preexisting beliefs or hypotheses) — and a study
conducted by Facebook in 2015 found that individual choices
more strongly determine news media consumption than the
Facebook news feed.4

Regardless of how filter bubbles and echo chambers are
actually created, though, semantic recommenders may fur-
ther "seal" the bubble or chamber. Prior to semantic recom-
menders (due to the lack of a solution for the cold start prob-
lem), developers had little choice but to introduce to users
new items that they did not yet know or predict the users
would like. Consequently, users could encounter items not
in accordance with past behavior, thereby increasing the di-

3 See http://ec.europa.eu/information_society/media_task

force/doc/pluralism/hlg/hlg_final_report.pdf.

4 See http://science.sciencemag.org/content/early/2015/05/06/

science.aaa1160. Given the researchers' affiliations, there may, of

course, be a conflict of interest at play.

Ethical Considerations 95

versity in the set of items they were presented with. With se-
mantic recommenders such chance encounters are less likely
to happen. Furthermore, since semantic recommenders can
trace the development of user preferences over time (driven,
in part, by current mood and opinion) and produce recom-
mendations accordingly, they can act as polarizers in times of
heated discourse.

To combat the potentially harmful effects of personalized
search and recommendation systems, some suggest that
developers use "exposure diversity" as a design principle
for these systems.5 Diversity becomes part of what the algo-
rithm optimizes for. Exposure diversity may help foster our
collective ability to digest diverse viewpoints for civil dis-
course, for example, and even reduce confirmation bias: pref-
erence-inconsistent recommendations are known to trigger
critical thinking patterns that can help overcome such bias.6
We may, furthermore, consider the development of tools to
inform readers about their news diet, providing an overview
of news consumption behavior in aggregate, and develop rec-
ommenders expressly designed to surface articles on topics
of interest, but with an opposing view, to help inform read-
ers about the extent of their bubble and encourage more bal-
anced consumption.

5 See http://www.tandfonline.com/doi/full/10.1080/136911

8X.2016.1271900.

6 See https://www.sciencedirect.com/science/article/pii/

S0747563212001963.

96 Ethical Considerations

7.2 Bias
Recommendation engines can encode biases and per-

petuate unwanted or harmful behavior. A study conducted
in 2015 found that compared to men, women see fewer ads
for high-paying jobs on Google.7 Another study found that
searching for names primarily given to black babies (e.g., De-
Shawn, Darnell, and Jermaine) generated public-record ads
suggestive of an arrest record in 81 to 86 percent of search-
es on one website, and 92 to 95 percent on another. When
searching for names primarily given to white babies (e.g.,
Geoffrey, Jill, and Emma), the word "arrest" appeared in only
23 to 29 percent of ads on the one site and 0 to 60 percent on
the other.8

Furthermore, recommenders may simply work less well
for minority groups. Since recommenders are evaluated with
a focus on the system’s overall effectiveness, and since larger
subgroups tend to dominate overall statistics, the satisfaction
of dominant user groups is weighted more heavily than that
of minority groups,9 which is a form of discrimination.

Finally, recommended items tend to get higher ratings be-
cause recommendations "anchor" user ratings — that is, us-
ers give higher ratings to an item because the item has been
recommended to them. This dynamic of "the rich get richer"
can prevent upstarts (like small vendors on Etsy) from grow-
ing their businesses, perpetuating the status quo.

7 See https://www.degruyter.com/view/j/popets.2015.1.issue-1/pop-

ets-2015-0007/popets-2015-0007.xml.

8 See https://arxiv.org/abs/1301.6822.

9 See http://ceur-ws.org/Vol-1905/recsys2017_poster20.pdf.

Ethical Considerations 97

Semantic recommenders, like behavior- or demograph-
ics-based recommenders, can encode all three types of bias-
es, while their solution to the cold start problem may in fact
exacerbate the "rich get richer" dynamic. Unfortunately, com-
bating bias is hard. Women and men tend to wear different
clothes, so a retailer may want to use the variable "gender"
in clothing recommendations. But it is wrong to serve "gen-
dered" job recommendations.

Removing protected category information from data that
powers recommenders is a start, but protected category in-
formation tends to correlate and interact with other variables
in unexpected and unknown ways. Model introspection may
help us understand how algorithms create recommendations
and spot bias. But neural recommenders (like semantic rec-
ommenders) are, compared to their non-neural cousins, hard-
er to introspect. We recommend the use and development of
tools to audit and test recommendation engines for bias, both
during development and once deployed.10 Equipped with
such tools, engineers should make a point of adding "bias
tests" to their suite of unit tests, functional tests, regression
tests, etc.

To ensure that recommenders do not serve only the major-
ity, we can downsample majority groups (or upsample minori-
ty groups) so that all groups are represented equally in the data
used during the development of recommendation systems. In
parallel, we need to develop evaluation methods that ensure
that recommenders serve all groups equally well, even at the

10 An example of such a tool is AdFisher, developed by Carnegie

Mellon University; see http://possibility.cylab.cmu.edu/adfisher/.

96 Ethical Considerations

7.2 Bias
Recommendation engines can encode biases and per-

petuate unwanted or harmful behavior. A study conducted
in 2015 found that compared to men, women see fewer ads
for high-paying jobs on Google.7 Another study found that
searching for names primarily given to black babies (e.g., De-
Shawn, Darnell, and Jermaine) generated public-record ads
suggestive of an arrest record in 81 to 86 percent of search-
es on one website, and 92 to 95 percent on another. When
searching for names primarily given to white babies (e.g.,
Geoffrey, Jill, and Emma), the word "arrest" appeared in only
23 to 29 percent of ads on the one site and 0 to 60 percent on
the other.8

Furthermore, recommenders may simply work less well
for minority groups. Since recommenders are evaluated with
a focus on the system’s overall effectiveness, and since larger
subgroups tend to dominate overall statistics, the satisfaction
of dominant user groups is weighted more heavily than that
of minority groups,9 which is a form of discrimination.

Finally, recommended items tend to get higher ratings be-
cause recommendations "anchor" user ratings — that is, us-
ers give higher ratings to an item because the item has been
recommended to them. This dynamic of "the rich get richer"
can prevent upstarts (like small vendors on Etsy) from grow-
ing their businesses, perpetuating the status quo.

7 See https://www.degruyter.com/view/j/popets.2015.1.issue-1/pop-

ets-2015-0007/popets-2015-0007.xml.

8 See https://arxiv.org/abs/1301.6822.

9 See http://ceur-ws.org/Vol-1905/recsys2017_poster20.pdf.

Ethical Considerations 97

Semantic recommenders, like behavior- or demograph-
ics-based recommenders, can encode all three types of bias-
es, while their solution to the cold start problem may in fact
exacerbate the "rich get richer" dynamic. Unfortunately, com-
bating bias is hard. Women and men tend to wear different
clothes, so a retailer may want to use the variable "gender"
in clothing recommendations. But it is wrong to serve "gen-
dered" job recommendations.

Removing protected category information from data that
powers recommenders is a start, but protected category in-
formation tends to correlate and interact with other variables
in unexpected and unknown ways. Model introspection may
help us understand how algorithms create recommendations
and spot bias. But neural recommenders (like semantic rec-
ommenders) are, compared to their non-neural cousins, hard-
er to introspect. We recommend the use and development of
tools to audit and test recommendation engines for bias, both
during development and once deployed.10 Equipped with
such tools, engineers should make a point of adding "bias
tests" to their suite of unit tests, functional tests, regression
tests, etc.

To ensure that recommenders do not serve only the major-
ity, we can downsample majority groups (or upsample minori-
ty groups) so that all groups are represented equally in the data
used during the development of recommendation systems. In
parallel, we need to develop evaluation methods that ensure
that recommenders serve all groups equally well, even at the

10 An example of such a tool is AdFisher, developed by Carnegie

Mellon University; see http://possibility.cylab.cmu.edu/adfisher/.

98 Ethical Considerations

expense of their overall effectiveness. Both mitigation strat-
egies force us to define majority and minority groups, which
is admittedly a minefield — but without such definitions, we
lack strategies to combat biases that exist today.

Finally, to break the "rich get richer" dynamic, we can use
algorithmic methods to estimate and subtract the effect of
a recommendation on a user rating, as has been done by re-
searchers at Cornell University.11 Combating bias is hard, but
there are tools developers can use to reduce bias in recom-
mendation systems.

7.3 Attacks & Gaming
Recommendation engines can be designed (or "gamed")

for economic benefit, rather than for best serving the needs,
wants, and interests of users. Retailers selling their wares
online can use recommendations to anchor consumer pref-
erence and expectation,12 nudging consumers to buy more
expensive items.

Retailers and content producers selling their wares on
aggregator websites or through social media platforms
(where they compete with others) can game recommend-
ers to recommend their products or content over another’s.

"Shilling" attacks, for example, are malicious attempts to

11 See http://papers.nips.cc/paper/6362-beyond-exchangeabili

ty-the-chinese-voting-process.

12 See https://arizona.pure.elsevier.com/en/publications/recom

mender-systems-consumer-preferences-and-anchoring-effects.

Ethical Considerations 99

change recommendations by inserting fake user profiles into
user-item matrices.13

Recommenders based on user behavior are particular-
ly prone to shilling attacks, while semantic recommenders,
since they make use of content (in addition to user behavior),
are more robust. They are, however, prone to another form of
gaming: content expressly designed to be favored by recom-
mendation engines.

In his post "Something Is Wrong on the Internet,"14 James
Bridle provides an example of what can happen when content

13 See http://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0130968.

14 See https://medium.com/@jamesbridle/something-is-wrong-on-

the-internet-c39c471271d2.

- Different item types

Algorithmic content
generator

Trending content

1.

2.

figure 7.3 Recommendation systems are vulnerable to gaming

through algorithmic content generation based on popular key-

words or topics.

98 Ethical Considerations

expense of their overall effectiveness. Both mitigation strat-
egies force us to define majority and minority groups, which
is admittedly a minefield — but without such definitions, we
lack strategies to combat biases that exist today.

Finally, to break the "rich get richer" dynamic, we can use
algorithmic methods to estimate and subtract the effect of
a recommendation on a user rating, as has been done by re-
searchers at Cornell University.11 Combating bias is hard, but
there are tools developers can use to reduce bias in recom-
mendation systems.

7.3 Attacks & Gaming
Recommendation engines can be designed (or "gamed")

for economic benefit, rather than for best serving the needs,
wants, and interests of users. Retailers selling their wares
online can use recommendations to anchor consumer pref-
erence and expectation,12 nudging consumers to buy more
expensive items.

Retailers and content producers selling their wares on
aggregator websites or through social media platforms
(where they compete with others) can game recommend-
ers to recommend their products or content over another’s.

"Shilling" attacks, for example, are malicious attempts to

11 See http://papers.nips.cc/paper/6362-beyond-exchangeabili

ty-the-chinese-voting-process.

12 See https://arizona.pure.elsevier.com/en/publications/recom

mender-systems-consumer-preferences-and-anchoring-effects.

Ethical Considerations 99

change recommendations by inserting fake user profiles into
user-item matrices.13

Recommenders based on user behavior are particular-
ly prone to shilling attacks, while semantic recommenders,
since they make use of content (in addition to user behavior),
are more robust. They are, however, prone to another form of
gaming: content expressly designed to be favored by recom-
mendation engines.

In his post "Something Is Wrong on the Internet,"14 James
Bridle provides an example of what can happen when content

13 See http://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0130968.

14 See https://medium.com/@jamesbridle/something-is-wrong-on-

the-internet-c39c471271d2.

- Different item types

Algorithmic content
generator

Trending content

1.

2.

figure 7.3 Recommendation systems are vulnerable to gaming

through algorithmic content generation based on popular key-

words or topics.

100 Ethical Considerations

is designed for recommendation engines first and foremost,
not people. Children’s entertainment on YouTube is lucrative:
children enjoy watching videos of Peppa Pig nursery rhymes,
and the unwrapping of Kinder Surprise Eggs. When a video
ends, recommendation engines surface the next recommend-
ed video, and with autoplay turned on, it will play after just a
brief interruption.

While some of the recommended videos are appropriate
suggestions, some have "word salad" titles that feel like they
are not intended for human consumption — and they aren’t:
they are algorithmically designed to be favored by the rec-
ommender. The content of some of these videos is decidedly

"odd" (and some are even disturbing or violent). With ever fast-
er and more inexpensive forms of content generation, from
cheap 3D animation to fully computer-generated content,
these videos may eventually crowd out more appropriate con-
tent and prove lucrative to their creators because of their high
ranking by YouTube’s recommendation engine (content pro-
ducers receive a share of ad revenue).

Recommendation engines are also gamed for ideological
reasons. Terrorist and hate groups disseminate content on-
line (including via social media and platforms like YouTube).
They have an interest in increasing the visibility of their mes-
sage to radicalize target groups. A report by Data & Society on
Media Manipulation and Disinformation Online, published in
May 2017,15 outlines how internet subcultures take advantage
of the current media ecosystem (including search and recom-

15 See https://datasociety.net/output/media-manipulation-and-dis

info-online/.

Ethical Considerations 101

menders) for their benefit, with detrimental consequences to
society (e.g., spreading misinformation and eroding trust in
traditional news media organizations).

Gaming, fraud, and abuse are a cat-and-mouse game; they
can never be entirely eradicated. Still, fake user profiles tend
to be dissimilar from existing user profiles: there are metrics
to determine the probability of a profile being real, or the re-
sult of a shilling attack, that can immunize recommenders
against such attacks.16

To combat content-based gaming, a new phenomenon, the
recommendation systems development community needs to
create strategies to identify "fake content" at scale. We could,
for example, flag content with word salad titles or block ac-
counts that publish very similar content very often (sugges-
tive of content autogeneration for gaming). To date, compa-
nies faced with the fake content challenge have struggled to
develop such strategies, because it is a very hard problem and
there is no silver bullet; YouTube recently hired thousands of
(human) content moderators to weed out inappropriate con-
tent, partly in response to Bridle’s post.

One of the central challenges in this debate and effort — a
challenge we face as a society — is the definition of what is
(and what is not) appropriate content (and who will be the arbi-
ter). While there are no definite answers to this question, there
are organizations and committees drafting possible solutions,

16 See http://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0130968.

100 Ethical Considerations

is designed for recommendation engines first and foremost,
not people. Children’s entertainment on YouTube is lucrative:
children enjoy watching videos of Peppa Pig nursery rhymes,
and the unwrapping of Kinder Surprise Eggs. When a video
ends, recommendation engines surface the next recommend-
ed video, and with autoplay turned on, it will play after just a
brief interruption.

While some of the recommended videos are appropriate
suggestions, some have "word salad" titles that feel like they
are not intended for human consumption — and they aren’t:
they are algorithmically designed to be favored by the rec-
ommender. The content of some of these videos is decidedly

"odd" (and some are even disturbing or violent). With ever fast-
er and more inexpensive forms of content generation, from
cheap 3D animation to fully computer-generated content,
these videos may eventually crowd out more appropriate con-
tent and prove lucrative to their creators because of their high
ranking by YouTube’s recommendation engine (content pro-
ducers receive a share of ad revenue).

Recommendation engines are also gamed for ideological
reasons. Terrorist and hate groups disseminate content on-
line (including via social media and platforms like YouTube).
They have an interest in increasing the visibility of their mes-
sage to radicalize target groups. A report by Data & Society on
Media Manipulation and Disinformation Online, published in
May 2017,15 outlines how internet subcultures take advantage
of the current media ecosystem (including search and recom-

15 See https://datasociety.net/output/media-manipulation-and-dis

info-online/.

Ethical Considerations 101

menders) for their benefit, with detrimental consequences to
society (e.g., spreading misinformation and eroding trust in
traditional news media organizations).

Gaming, fraud, and abuse are a cat-and-mouse game; they
can never be entirely eradicated. Still, fake user profiles tend
to be dissimilar from existing user profiles: there are metrics
to determine the probability of a profile being real, or the re-
sult of a shilling attack, that can immunize recommenders
against such attacks.16

To combat content-based gaming, a new phenomenon, the
recommendation systems development community needs to
create strategies to identify "fake content" at scale. We could,
for example, flag content with word salad titles or block ac-
counts that publish very similar content very often (sugges-
tive of content autogeneration for gaming). To date, compa-
nies faced with the fake content challenge have struggled to
develop such strategies, because it is a very hard problem and
there is no silver bullet; YouTube recently hired thousands of
(human) content moderators to weed out inappropriate con-
tent, partly in response to Bridle’s post.

One of the central challenges in this debate and effort — a
challenge we face as a society — is the definition of what is
(and what is not) appropriate content (and who will be the arbi-
ter). While there are no definite answers to this question, there
are organizations and committees drafting possible solutions,

16 See http://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0130968.

102 Ethical Considerations

some of them recently formed in the light of new challenges.17

7.4 What (More) Can We Do?
Recommendation engines are powerful. Development

and deployment requires thought to ensure they are helpful,
not harmful. Throughout this chapter, we’ve outlined strate-
gies for developers to reduce the harmful effects of filter bub-
bles and echo chambers, bias, attacks, and malicious gam-
ing — but there is more we can do.

As users of recommenders and consumers of recommenda-
tions, we can challenge ourselves to overcome confirmation
bias and consciously adopt a more balanced "news diet"; we
can decide to read across partisan lines. We can use incognito
browser windows and search engines like duckduckgo.com
that do not store personal information and do not track users.
As we interact with content on media platforms, we can re-
port fraud and abuse to companies, to help reduce malicious
activity on their sites and products (and contribute to public
pressure, in case companies fail to act on this information).

Finally, we can take part in the public debate on what is
and what isn’t appropriate content, sharing our perspectives
on what is plainly a complex issue that can only be addressed
through collective effort.

17 See https://www.ft.com/content/080d1dd4-d92c-11e7-a039-

c64b1c09b482.

The Future of Recommendations 103

chapter 8
The Future of Recommendations

Semantic recommendation systems offer us the ability to
produce highly influential results with greater precision than
many of the current “do what’s been most popular” personal-
ization tools underlying many apps and search engines. The
growth of these emerging techniques still faces several limita-
tions in the immediate future, but once these limitations are
overcome, the tools will also lead to spectacular and nonintu-
itive new capabilities.

We want to clarify that a recommendation is only a predic-
tion (built upon past feedback), serving as a proxy for what a
user might actually want; we (as the data scientists behind the
recommender) hope the prediction relates to that user’s pref-
erences closely enough within a certain window of time as to
be useful. As user interfaces improve and collect more precise
user preference information, we expect model development
to improve as well. Because the design of nonintrusive and
easy-to-use interfaces can be very challenging, we expect that
the adoption of some advanced recommendation techniques
may hinge on users' comfort with sharing more personal re-
quests and specific preferences with the systems. For exam-
ple, it may be easier to tell even a friend (let alone an app) that
you’re looking for a story “like Harry Potter” than to spell out
that you want to read something featuring centaurs, dragons,

102 Ethical Considerations

some of them recently formed in the light of new challenges.17

7.4 What (More) Can We Do?
Recommendation engines are powerful. Development

and deployment requires thought to ensure they are helpful,
not harmful. Throughout this chapter, we’ve outlined strate-
gies for developers to reduce the harmful effects of filter bub-
bles and echo chambers, bias, attacks, and malicious gam-
ing — but there is more we can do.

As users of recommenders and consumers of recommenda-
tions, we can challenge ourselves to overcome confirmation
bias and consciously adopt a more balanced "news diet"; we
can decide to read across partisan lines. We can use incognito
browser windows and search engines like duckduckgo.com
that do not store personal information and do not track users.
As we interact with content on media platforms, we can re-
port fraud and abuse to companies, to help reduce malicious
activity on their sites and products (and contribute to public
pressure, in case companies fail to act on this information).

Finally, we can take part in the public debate on what is
and what isn’t appropriate content, sharing our perspectives
on what is plainly a complex issue that can only be addressed
through collective effort.

17 See https://www.ft.com/content/080d1dd4-d92c-11e7-a039-

c64b1c09b482.

The Future of Recommendations 103

chapter 8
The Future of Recommendations

Semantic recommendation systems offer us the ability to
produce highly influential results with greater precision than
many of the current “do what’s been most popular” personal-
ization tools underlying many apps and search engines. The
growth of these emerging techniques still faces several limita-
tions in the immediate future, but once these limitations are
overcome, the tools will also lead to spectacular and nonintu-
itive new capabilities.

We want to clarify that a recommendation is only a predic-
tion (built upon past feedback), serving as a proxy for what a
user might actually want; we (as the data scientists behind the
recommender) hope the prediction relates to that user’s pref-
erences closely enough within a certain window of time as to
be useful. As user interfaces improve and collect more precise
user preference information, we expect model development
to improve as well. Because the design of nonintrusive and
easy-to-use interfaces can be very challenging, we expect that
the adoption of some advanced recommendation techniques
may hinge on users' comfort with sharing more personal re-
quests and specific preferences with the systems. For exam-
ple, it may be easier to tell even a friend (let alone an app) that
you’re looking for a story “like Harry Potter” than to spell out
that you want to read something featuring centaurs, dragons,

104 The Future of Recommendations

mass murderers, and a coming of age love story. Further, most
people simply aren’t used to being able to ask for more from
search and recommendation systems. Most of us take it for
granted that website and app search suggestions are regularly
inaccurate, to the point where we are offered hundreds (if not
thousands) of options to scroll through on a results page. It’s
also quite common for people to simply feel that they won’t
know specifically what they are looking for until they see it.
However, the payoff for us (as users) in opening up with great-
er specificity about what it is we are really looking for will be
measured in both immense time savings and much greater
user satisfaction.

We do see some progress being made in overcoming this
tailored data collection challenge, as we’re seeing more (and
better) integration of lifestyle aids in our consumer experienc-
es. For many, the debate over how invasive such technologies
are now and how much data should be permitted to be collect-
ed on our lives is quite active, and (as noted in 7 Ethical Con-
siderations) the imbalance in personalization for the "haves"
vs. "the have-nots" will continue to be a substantive concern.
However, these data-collection devices are becoming more
and more welcomed and integrated into our lives, in forms
such as mobile phones with GPS tracking, Fitbit-like lifestyle
trackers, and "personal assistants" like Alexa, Siri, and Corta-
na. All of these devices facilitate the gathering of data from
an increasingly broader range of user actions, which will be
key to the growth of more capable and more personalized
recommenders.

Similar to the challenges facing many other emerging ma-
chine learning capabilities, such as those for video analysis in

The Future of Recommendations 105

fields like medical robotics, we see that the lack of topical la-
beled training data can really limit effective recommendation
algorithm development. Even within available scored data-
sets, the information may not be as valuable as we would hope
in developing accurate recommendation models. For exam-
ple, in preparing for this report and building the accompa-
nying prototype, we found many of the datasets we explored
used 5-star ranking systems, but the vast majority of the user
scores were simply 1, 4, and 5 stars. So, although technical-
ly the datasets had a large number of ratings, we estimate
that much of the true sentiment of the users is buried in oth-
er characteristics of the works which were not measured in
the general scale. Netflix analysts/engineers may have noted
a similar feature, leading to their switch in spring 2017 to a
thumbs-up/thumbs-down scoring system.

Data limitations notwithstanding, we’re looking forward
to growth and development in the neural network space ap-
plicable to training multimodal embeddings. We expect bet-
ter understanding of embeddings will help spur the growth
of recommendation systems and, in turn, new and exciting

Tom
Waits Enya

Led
Zeppelin

Dhal-
gren Lord

of the
RingsHarry

Potter

Embedding

figure 8.1 Multimodal embeddings could allow us to recommend

books based on a user’s music taste.

104 The Future of Recommendations

mass murderers, and a coming of age love story. Further, most
people simply aren’t used to being able to ask for more from
search and recommendation systems. Most of us take it for
granted that website and app search suggestions are regularly
inaccurate, to the point where we are offered hundreds (if not
thousands) of options to scroll through on a results page. It’s
also quite common for people to simply feel that they won’t
know specifically what they are looking for until they see it.
However, the payoff for us (as users) in opening up with great-
er specificity about what it is we are really looking for will be
measured in both immense time savings and much greater
user satisfaction.

We do see some progress being made in overcoming this
tailored data collection challenge, as we’re seeing more (and
better) integration of lifestyle aids in our consumer experienc-
es. For many, the debate over how invasive such technologies
are now and how much data should be permitted to be collect-
ed on our lives is quite active, and (as noted in 7 Ethical Con-
siderations) the imbalance in personalization for the "haves"
vs. "the have-nots" will continue to be a substantive concern.
However, these data-collection devices are becoming more
and more welcomed and integrated into our lives, in forms
such as mobile phones with GPS tracking, Fitbit-like lifestyle
trackers, and "personal assistants" like Alexa, Siri, and Corta-
na. All of these devices facilitate the gathering of data from
an increasingly broader range of user actions, which will be
key to the growth of more capable and more personalized
recommenders.

Similar to the challenges facing many other emerging ma-
chine learning capabilities, such as those for video analysis in

The Future of Recommendations 105

fields like medical robotics, we see that the lack of topical la-
beled training data can really limit effective recommendation
algorithm development. Even within available scored data-
sets, the information may not be as valuable as we would hope
in developing accurate recommendation models. For exam-
ple, in preparing for this report and building the accompa-
nying prototype, we found many of the datasets we explored
used 5-star ranking systems, but the vast majority of the user
scores were simply 1, 4, and 5 stars. So, although technical-
ly the datasets had a large number of ratings, we estimate
that much of the true sentiment of the users is buried in oth-
er characteristics of the works which were not measured in
the general scale. Netflix analysts/engineers may have noted
a similar feature, leading to their switch in spring 2017 to a
thumbs-up/thumbs-down scoring system.

Data limitations notwithstanding, we’re looking forward
to growth and development in the neural network space ap-
plicable to training multimodal embeddings. We expect bet-
ter understanding of embeddings will help spur the growth
of recommendation systems and, in turn, new and exciting

Tom
Waits Enya

Led
Zeppelin

Dhal-
gren Lord

of the
RingsHarry

Potter

Embedding

figure 8.1 Multimodal embeddings could allow us to recommend

books based on a user’s music taste.

106 The Future of Recommendations

recommendation capabilities. For example, clearer under-
standings of bimodal and multimodal embeddings could
lead to recommendations of music or other art forms based
on a user’s book preferences (and vice versa). We may even
see personal action recommendations, such as receiving a
suggestion to eat before you even realize you’re a bit peckish,
a water heater warming water in the tank in anticipation of
you wanting to take a bath, or a coffee maker brewing a pot of
coffee in anticipation of when friends at a dinner party may
want a cup. A specific area we’re watching is the development
of attention models, which we feel will support increasing in-
terpretability of neural network systems and further benefit
understanding of embeddings — how seemingly unrelated
objects and actions are each represented in a network.

We’re also watching the growth of video analytics capabil-
ities, and how the media industry addresses expected interest
with tailored content generation. We know that developers
across industries are aware of the data availability challenge
and are working to grow larger and more complete datasets,
such as more completely labeled videos with new tags and
features, as well as joined datasets. This growth will help
drive neural network advancement, which will in turn help
boost the low signal-to-noise ratio in recommendation offer-
ings. However, we also recognize that the media industry in
particular may shortsightedly and excessively buy in to rec-
ommending content tailored solely to user preferences (we’re
not fans; see the 7.1 Filter Bubbles & Echo Chambers). While
there are interesting problems in the tailored content space,
too much emphasis may delay the advent of truly revolution-
ary (recommendations-based) capabilities, which will change

The Future of Recommendations 107

the ways we interact with the world and connect our ideas
and actions.

Finally, in terms of raw processing capability, by summer
2018 we’re expecting to see new hardware become available
with which data scientists will be better able to train larger
models designed to uncover semantic relevancy. In particu-
lar, the increasing integration of ASICs (application-specific
integrated circuits) into chipsets, as with the NVIDIA Volta,
is providing a boost to machine learning processing capabili-
ties. The growing competition in this space between NVIDIA,
Intel (currently developing its Nervana chipset tailored for
ML), and other hybrid and ML-focused processing units will
only serve to deliver greater capability at better prices going
forward.

8.1 Recommendation Sci-Fi: Customers Who
Haven’t Read Kafka Also Like

A short story written by Kent Szlauderbach,1 inspired by Franz
Kafka’s parable "An Imperial Message".2

Given that Kafka’s famous parable, “An Imperial Message,”
never happened, neither would this parable, as our model
suggests, though they are very similar. Say the most power-
ful computer in the nation sends a message, in a fatal error,
containing the story’s true meaning to you, a modest user, a
forensic trace represented by mere underscores bookended
by two periods, a crushed smiley at the bottom of the remot-
est silo in the most isolated piece of crumbling land that can

1 See http://kentszlauderbach.com.

2 See http://home.nwciowa.edu/firth/kafka.htm.

106 The Future of Recommendations

recommendation capabilities. For example, clearer under-
standings of bimodal and multimodal embeddings could
lead to recommendations of music or other art forms based
on a user’s book preferences (and vice versa). We may even
see personal action recommendations, such as receiving a
suggestion to eat before you even realize you’re a bit peckish,
a water heater warming water in the tank in anticipation of
you wanting to take a bath, or a coffee maker brewing a pot of
coffee in anticipation of when friends at a dinner party may
want a cup. A specific area we’re watching is the development
of attention models, which we feel will support increasing in-
terpretability of neural network systems and further benefit
understanding of embeddings — how seemingly unrelated
objects and actions are each represented in a network.

We’re also watching the growth of video analytics capabil-
ities, and how the media industry addresses expected interest
with tailored content generation. We know that developers
across industries are aware of the data availability challenge
and are working to grow larger and more complete datasets,
such as more completely labeled videos with new tags and
features, as well as joined datasets. This growth will help
drive neural network advancement, which will in turn help
boost the low signal-to-noise ratio in recommendation offer-
ings. However, we also recognize that the media industry in
particular may shortsightedly and excessively buy in to rec-
ommending content tailored solely to user preferences (we’re
not fans; see the 7.1 Filter Bubbles & Echo Chambers). While
there are interesting problems in the tailored content space,
too much emphasis may delay the advent of truly revolution-
ary (recommendations-based) capabilities, which will change

The Future of Recommendations 107

the ways we interact with the world and connect our ideas
and actions.

Finally, in terms of raw processing capability, by summer
2018 we’re expecting to see new hardware become available
with which data scientists will be better able to train larger
models designed to uncover semantic relevancy. In particu-
lar, the increasing integration of ASICs (application-specific
integrated circuits) into chipsets, as with the NVIDIA Volta,
is providing a boost to machine learning processing capabili-
ties. The growing competition in this space between NVIDIA,
Intel (currently developing its Nervana chipset tailored for
ML), and other hybrid and ML-focused processing units will
only serve to deliver greater capability at better prices going
forward.

8.1 Recommendation Sci-Fi: Customers Who
Haven’t Read Kafka Also Like

A short story written by Kent Szlauderbach,1 inspired by Franz
Kafka’s parable "An Imperial Message".2

Given that Kafka’s famous parable, “An Imperial Message,”
never happened, neither would this parable, as our model
suggests, though they are very similar. Say the most power-
ful computer in the nation sends a message, in a fatal error,
containing the story’s true meaning to you, a modest user, a
forensic trace represented by mere underscores bookended
by two periods, a crushed smiley at the bottom of the remot-
est silo in the most isolated piece of crumbling land that can

1 See http://kentszlauderbach.com.

2 See http://home.nwciowa.edu/firth/kafka.htm.

108 The Future of Recommendations

still be accessed from the office that houses the tower, which
is gleaming and made all of windows and plants, as you can
see. To its subjects the office suits the computer’s good policy,
clear thinking, and calm understanding—unlike yours, the
message’s subject. We all feel this way now and then. Better
for you, the subject, that the computer’s message, its produc-
tion of meaning after reading the famous parable, which the
subject has never read, according to the model, urgently needs
to be delivered to this subject alone, which is so rare as to be
impossible, we modeled, we thought, given that the computer
was not designed to send messages so… personal, so clearly
made out to a reader. What it says is not our business; the suc-
cessful delivery of this message is: so the computer called a
little messenger over, said good boy, because you can imag-
ine a black dog better than a black box, and began to whis-
per the message that you’ve been wanting to hear, something
so urgent, perhaps for the perfect product—no, service—the
one that may have been your very idea, the one you need now
more than ever. What could it say? The computer, in its tow-

Customers Who
Haven’t Read

Kafka Also Like

The Future of Recommendations 109

ering form and brilliant interface, standing at the center of
its office made of windows and plants, made a command to
the messenger, which had never happened before and should
never have happened, we thought, we modeled, but still, the
computer set delivery to the subject who shall be delivered of
the need to hear that message, that message that the comput-
er had delivered to a messenger, who we can only say is a black
box, a negative, nothing we can say, that is neither black nor a
box. The dog carried its black box in its mouth along the path
below but still in range of sight of the office made of windows
and plants, then down through an office park, where in its vis-
ible spectrum it could see the thousands of others like him
itself who had come to the office of windows and plants to
witness the fatal error of the computer, dogs whose messages
were totally unlike yours, mutually unintelligible as they were,
but had gathered there anyway to witness the message as if it
were the final move in a game, this final stroke of the task, but
instead demanded that this message go out to a single subject
in the remotest place in the country’s network, a black box
through a black box, first through the innermost room of an
office park that was neither black nor a box, to the inner city
whose office park buildings were themselves black boxes atop
black boxes, but again, were neither black nor boxes, but blue
and reflective, where our messenger looked—yes this dog
vessel could look and learn itself, as we modeled, we thought.
Even if these buildings, as they appear to the messenger, are
not black nor boxes, they give the messenger, looking at it-
self, the feeling of a black box, of unknowing, since he it has
no idea what is contained in this message, or how he’ll it will
ever get to you and if he it ever will, but yet he it presses on as

108 The Future of Recommendations

still be accessed from the office that houses the tower, which
is gleaming and made all of windows and plants, as you can
see. To its subjects the office suits the computer’s good policy,
clear thinking, and calm understanding—unlike yours, the
message’s subject. We all feel this way now and then. Better
for you, the subject, that the computer’s message, its produc-
tion of meaning after reading the famous parable, which the
subject has never read, according to the model, urgently needs
to be delivered to this subject alone, which is so rare as to be
impossible, we modeled, we thought, given that the computer
was not designed to send messages so… personal, so clearly
made out to a reader. What it says is not our business; the suc-
cessful delivery of this message is: so the computer called a
little messenger over, said good boy, because you can imag-
ine a black dog better than a black box, and began to whis-
per the message that you’ve been wanting to hear, something
so urgent, perhaps for the perfect product—no, service—the
one that may have been your very idea, the one you need now
more than ever. What could it say? The computer, in its tow-

Customers Who
Haven’t Read

Kafka Also Like

The Future of Recommendations 109

ering form and brilliant interface, standing at the center of
its office made of windows and plants, made a command to
the messenger, which had never happened before and should
never have happened, we thought, we modeled, but still, the
computer set delivery to the subject who shall be delivered of
the need to hear that message, that message that the comput-
er had delivered to a messenger, who we can only say is a black
box, a negative, nothing we can say, that is neither black nor a
box. The dog carried its black box in its mouth along the path
below but still in range of sight of the office made of windows
and plants, then down through an office park, where in its vis-
ible spectrum it could see the thousands of others like him
itself who had come to the office of windows and plants to
witness the fatal error of the computer, dogs whose messages
were totally unlike yours, mutually unintelligible as they were,
but had gathered there anyway to witness the message as if it
were the final move in a game, this final stroke of the task, but
instead demanded that this message go out to a single subject
in the remotest place in the country’s network, a black box
through a black box, first through the innermost room of an
office park that was neither black nor a box, to the inner city
whose office park buildings were themselves black boxes atop
black boxes, but again, were neither black nor boxes, but blue
and reflective, where our messenger looked—yes this dog
vessel could look and learn itself, as we modeled, we thought.
Even if these buildings, as they appear to the messenger, are
not black nor boxes, they give the messenger, looking at it-
self, the feeling of a black box, of unknowing, since he it has
no idea what is contained in this message, or how he’ll it will
ever get to you and if he it ever will, but yet he it presses on as

110 The Future of Recommendations

the computer commanded, for even if the messenger reached
the edge of the city, it would still have to make it through the
suburb offices of black boxes, buildings that had grown so tall
and wide as to become indistinguishable from the inner city.
Still not lost, it would take even more power and time to de-
liver the message to its recipient. We have worked very hard
to understand the impossibility of this. We’ve thought about
how one could be receiving these kinds of messages before,
but only in their lack of possibility. Pure imagination. This
would never happen. And you think, waiting for the messen-
ger who had been given the rarest possible message ever cre-
ated: What would it say? What is the meaning of the famous
parable? You’ve been selected to read this because you are the
last of a group of people who speak this language, perhaps, or
only, the last who has not read this parable. This language is
English: the subject’s recommended language, not the orig-
inal. Do you know it? Click yes or no, you think, we thought,
when it would arrive, when you would hear the ring on your
phone. Thank you. That’s what it might sound like, a sound
you’d never imagine you would hear. We’re not in the busi-
ness of recommending content, it might say. We recommend
memories, that of the computer sending you such a perfect
message on your birthday. Is that all it says? Was that the day?
But still the message is far away, still walking through the of-
fice park, even as you wait and look vaguely out the window
toward the office made of windows and plants.

Conclusion 111

chapter 9
Conclusion

Robust and meaningful recommendation algorithms are
critical to a thriving internet economy. Current approaches
are fraught with problems, from the lack of motivation in
evaluating their success to the cold start problem and the
algorithm’s general ignorance of content. Solutions to these
problems are beginning to make their way into common prac-
tice through the use of algorithms like multi-modal models.
This signals a fundamental shift in the prevalence of semantic
recommendation systems and the fields that are able to take
advantage of them.

Our prototype, Deep Bargain Book Store, shows the pos-
sibilities of these algorithms, as well as their current failings.
We are able to sidestep the cold start problem and form rec-
ommendations based on the actual content that is being rec-
ommended. Furthermore, we are able to recommend items
based on an actual user preference as opposed to an item’s
general popularity. However, we are still limited to only the
summary of a book, as opposed to the actual book text, and
the algorithms are still not quite robust enough for out-of-
the-box usage. There are still quite a few problems to solve.
But that said, we believe this exciting field is one that should
be kept on all researchers' radar; we predict that in the com-
ing years new work will accelerate these methods into more

110 The Future of Recommendations

the computer commanded, for even if the messenger reached
the edge of the city, it would still have to make it through the
suburb offices of black boxes, buildings that had grown so tall
and wide as to become indistinguishable from the inner city.
Still not lost, it would take even more power and time to de-
liver the message to its recipient. We have worked very hard
to understand the impossibility of this. We’ve thought about
how one could be receiving these kinds of messages before,
but only in their lack of possibility. Pure imagination. This
would never happen. And you think, waiting for the messen-
ger who had been given the rarest possible message ever cre-
ated: What would it say? What is the meaning of the famous
parable? You’ve been selected to read this because you are the
last of a group of people who speak this language, perhaps, or
only, the last who has not read this parable. This language is
English: the subject’s recommended language, not the orig-
inal. Do you know it? Click yes or no, you think, we thought,
when it would arrive, when you would hear the ring on your
phone. Thank you. That’s what it might sound like, a sound
you’d never imagine you would hear. We’re not in the busi-
ness of recommending content, it might say. We recommend
memories, that of the computer sending you such a perfect
message on your birthday. Is that all it says? Was that the day?
But still the message is far away, still walking through the of-
fice park, even as you wait and look vaguely out the window
toward the office made of windows and plants.

Conclusion 111

chapter 9
Conclusion

Robust and meaningful recommendation algorithms are
critical to a thriving internet economy. Current approaches
are fraught with problems, from the lack of motivation in
evaluating their success to the cold start problem and the
algorithm’s general ignorance of content. Solutions to these
problems are beginning to make their way into common prac-
tice through the use of algorithms like multi-modal models.
This signals a fundamental shift in the prevalence of semantic
recommendation systems and the fields that are able to take
advantage of them.

Our prototype, Deep Bargain Book Store, shows the pos-
sibilities of these algorithms, as well as their current failings.
We are able to sidestep the cold start problem and form rec-
ommendations based on the actual content that is being rec-
ommended. Furthermore, we are able to recommend items
based on an actual user preference as opposed to an item’s
general popularity. However, we are still limited to only the
summary of a book, as opposed to the actual book text, and
the algorithms are still not quite robust enough for out-of-
the-box usage. There are still quite a few problems to solve.
But that said, we believe this exciting field is one that should
be kept on all researchers' radar; we predict that in the com-
ing years new work will accelerate these methods into more

112 Conclusion

general use across multiple sectors.
There is still societal tension regarding where semantic

recommendation systems should be implemented and what
their tasks should be. Important questions about echo cham-
bers, filter bubbles and algorithmically tailored content still
need exploring for us to fully understand the ramifications of
any system we build. It is particularly important for recom-
mendation systems to be motivated by these considerations,
since they are built to predict human interactions!

Over the coming years, we will see new datasets being re-
leased that will help fuel more research into recommendation
systems. We predict this will cause a rise in the applicability,
stability, and robustness of mutli-modal models. With these
advances will come recommendation systems that can be
used in new ways, without sacrificing their ability to create
meaningful recommendations.

112 Conclusion

general use across multiple sectors.
There is still societal tension regarding where semantic

recommendation systems should be implemented and what
their tasks should be. Important questions about echo cham-
bers, filter bubbles and algorithmically tailored content still
need exploring for us to fully understand the ramifications of
any system we build. It is particularly important for recom-
mendation systems to be motivated by these considerations,
since they are built to predict human interactions!

Over the coming years, we will see new datasets being re-
leased that will help fuel more research into recommendation
systems. We predict this will cause a rise in the applicability,
stability, and robustness of mutli-modal models. With these
advances will come recommendation systems that can be
used in new ways, without sacrificing their ability to create
meaningful recommendations.

